Learning to Simulate Human Mobility

鉴别器 计算机科学 发电机(电路理论) 弹道 机动性模型 基线(sea) 人工智能 机器学习 领域知识 数据挖掘 功率(物理) 分布式计算 探测器 海洋学 物理 地质学 电信 量子力学 天文
作者
Jie Feng,Zeyu Yang,Fengli Xu,Haisu Yu,Mudan Wang,Yong Li
标识
DOI:10.1145/3394486.3412862
摘要

Realistic simulation of a massive amount of human mobility data is of great use in epidemic spreading modeling and related health policy-making. Existing solutions for mobility simulation can be classified into two categories: model-based methods and model-free methods, which are both limited in generating high-quality mobility data due to the complicated transitions and complex regularities in human mobility. To solve this problem, we propose a model-free generative adversarial framework, which effectively integrates the domain knowledge of human mobility regularity utilized in the model-based methods. In the proposed framework, we design a novel self-attention based sequential modeling network as the generator to capture the complicated temporal transitions in human mobility. To augment the learning power of the generator with the advantages of model-based methods, we design an attention-based region network to introduce the prior knowledge of urban structure to generate a meaningful trajectory. As for the discriminator, we design a mobility regularity-aware loss to distinguish the generated trajectory. Finally, we utilize the mobility regularities of spatial continuity and temporal periodicity to pre-train the generator and discriminator to further accelerate the learning procedure. Extensive experiments on two real-life mobility datasets demonstrate that our framework outperforms seven state-of-the-art baselines significantly in terms of improving the quality of simulated mobility data by 35%. Furthermore, in the simulated spreading of COVID-19, synthetic data from our framework reduces MAPE from 5% ~ 10% (baseline performance) to 2%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心乌完成签到,获得积分0
1秒前
4秒前
爱吃饭的黄哥完成签到,获得积分10
6秒前
天天快乐应助绿绿采纳,获得10
6秒前
6秒前
向阳完成签到 ,获得积分10
7秒前
han发布了新的文献求助10
7秒前
minjeong完成签到,获得积分10
10秒前
液晶屏99完成签到,获得积分10
12秒前
Q清风慕竹完成签到,获得积分10
12秒前
keisuke33发布了新的文献求助10
12秒前
whoami发布了新的文献求助30
15秒前
奇拉维特完成签到 ,获得积分10
19秒前
21秒前
NN发布了新的文献求助30
23秒前
23秒前
24秒前
25秒前
26秒前
cs发布了新的文献求助10
28秒前
学不完了发布了新的文献求助10
28秒前
qiulong完成签到,获得积分10
28秒前
英姑应助迷恋采纳,获得10
29秒前
30秒前
你爸爸完成签到,获得积分10
30秒前
qiulong发布了新的文献求助10
31秒前
cdercder应助科研通管家采纳,获得10
31秒前
思源应助科研通管家采纳,获得20
31秒前
6666666666完成签到 ,获得积分10
32秒前
Almo完成签到,获得积分10
36秒前
wlei完成签到,获得积分10
37秒前
魏猛完成签到,获得积分10
37秒前
如常完成签到,获得积分10
38秒前
阿狸完成签到 ,获得积分10
38秒前
惘然完成签到 ,获得积分10
39秒前
领导范儿应助学不完了采纳,获得10
39秒前
40秒前
科研通AI5应助如常采纳,获得10
42秒前
周em12_完成签到,获得积分10
43秒前
43秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799165
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321911
捐赠科研通 3061287
什么是DOI,文献DOI怎么找? 1680191
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445