A reference map of potential determinants for the human serum metabolome

代谢组 微生物群 代谢物 代谢组学 人体微生物群 生物 计算生物学 归属 肠道微生物群 生物信息学 遗传学 生理学 生物化学 心理学 社会心理学
作者
Noam Bar,Tal Korem,Omer Weissbrod,David Zeevi,Daphna Rothschild,Sigal Leviatan,Noa Kosower,Maya Lotan‐Pompan,Adina Weinberger,Caroline Le Roy,Cristina Menni,Alessia Visconti,Mario Falchi,Tim D. Spector,Henrik Vestergaard,Manimozhiyan Arumugam,Torben Hansen,Kristine H. Allin,Tue H. Hansen,Mun‐Gwan Hong
出处
期刊:Nature [Nature Portfolio]
卷期号:588 (7836): 135-140 被引量:343
标识
DOI:10.1038/s41586-020-2896-2
摘要

The serum metabolome contains a plethora of biomarkers and causative agents of various diseases, some of which are endogenously produced and some that have been taken up from the environment1. The origins of specific compounds are known, including metabolites that are highly heritable2,3, or those that are influenced by the gut microbiome4, by lifestyle choices such as smoking5, or by diet6. However, the key determinants of most metabolites are still poorly understood. Here we measured the levels of 1,251 metabolites in serum samples from a unique and deeply phenotyped healthy human cohort of 491 individuals. We applied machine-learning algorithms to predict metabolite levels in held-out individuals on the basis of host genetics, gut microbiome, clinical parameters, diet, lifestyle and anthropometric measurements, and obtained statistically significant predictions for more than 76% of the profiled metabolites. Diet and microbiome had the strongest predictive power, and each explained hundreds of metabolites—in some cases, explaining more than 50% of the observed variance. We further validated microbiome-related predictions by showing a high replication rate in two geographically independent cohorts7,8 that were not available to us when we trained the algorithms. We used feature attribution analysis9 to reveal specific dietary and bacterial interactions. We further demonstrate that some of these interactions might be causal, as some metabolites that we predicted to be positively associated with bread were found to increase after a randomized clinical trial of bread intervention. Overall, our results reveal potential determinants of more than 800 metabolites, paving the way towards a mechanistic understanding of alterations in metabolites under different conditions and to designing interventions for manipulating the levels of circulating metabolites. The levels of 1,251 metabolites are measured in 475 phenotyped individuals, and machine-learning algorithms reveal that diet and the microbiome are the determinants with the strongest predictive power for the levels of these metabolites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂奔的蜗牛完成签到 ,获得积分10
1秒前
1秒前
3秒前
叮当发布了新的文献求助10
4秒前
大聪明发布了新的文献求助10
4秒前
5秒前
9527完成签到,获得积分10
5秒前
7秒前
风车发布了新的文献求助10
8秒前
8秒前
晨晨岑晨完成签到,获得积分10
8秒前
Dionevic关注了科研通微信公众号
9秒前
我是老大应助liutg24采纳,获得30
10秒前
10秒前
奥暖将完成签到,获得积分10
11秒前
HM发布了新的文献求助10
12秒前
aldehyde应助成就的艳一采纳,获得10
12秒前
华仔应助lilili采纳,获得10
13秒前
13秒前
司空豁发布了新的文献求助10
13秒前
Sunday完成签到,获得积分10
14秒前
tianjinyd完成签到,获得积分10
15秒前
小黎完成签到 ,获得积分10
15秒前
cccttt完成签到,获得积分10
16秒前
畅快海云完成签到 ,获得积分10
16秒前
封闭货车发布了新的文献求助10
17秒前
传奇3应助风车采纳,获得10
18秒前
詹密完成签到,获得积分10
18秒前
19秒前
qyang完成签到 ,获得积分10
20秒前
幽默的乐双完成签到,获得积分10
20秒前
秋秋寒完成签到,获得积分10
20秒前
肱二头肌完成签到,获得积分10
22秒前
Star发布了新的文献求助30
23秒前
herococa应助冬瓜熊采纳,获得30
24秒前
彩色德天完成签到 ,获得积分10
25秒前
小二郎应助LJJ采纳,获得10
26秒前
26秒前
云轩完成签到,获得积分10
27秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942180
求助须知:如何正确求助?哪些是违规求助? 3487467
关于积分的说明 11043863
捐赠科研通 3217909
什么是DOI,文献DOI怎么找? 1778615
邀请新用户注册赠送积分活动 864362
科研通“疑难数据库(出版商)”最低求助积分说明 799375