已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A reference map of potential determinants for the human serum metabolome

代谢组 微生物群 代谢物 代谢组学 人体微生物群 生物 计算生物学 归属 肠道微生物群 生物信息学 遗传学 生理学 生物化学 心理学 社会心理学
作者
Noam Bar,Tal Korem,Omer Weissbrod,David Zeevi,Daphna Rothschild,Sigal Leviatan,Noa Kosower,Maya Lotan‐Pompan,Adina Weinberger,Caroline Le Roy,Cristina Menni,Alessia Visconti,Mario Falchi,Tim D. Spector,Henrik Vestergaard,Manimozhiyan Arumugam,Torben Hansen,Kristine H. Allin,Tue H. Hansen,Mun‐Gwan Hong
出处
期刊:Nature [Springer Nature]
卷期号:588 (7836): 135-140 被引量:401
标识
DOI:10.1038/s41586-020-2896-2
摘要

The serum metabolome contains a plethora of biomarkers and causative agents of various diseases, some of which are endogenously produced and some that have been taken up from the environment1. The origins of specific compounds are known, including metabolites that are highly heritable2,3, or those that are influenced by the gut microbiome4, by lifestyle choices such as smoking5, or by diet6. However, the key determinants of most metabolites are still poorly understood. Here we measured the levels of 1,251 metabolites in serum samples from a unique and deeply phenotyped healthy human cohort of 491 individuals. We applied machine-learning algorithms to predict metabolite levels in held-out individuals on the basis of host genetics, gut microbiome, clinical parameters, diet, lifestyle and anthropometric measurements, and obtained statistically significant predictions for more than 76% of the profiled metabolites. Diet and microbiome had the strongest predictive power, and each explained hundreds of metabolites—in some cases, explaining more than 50% of the observed variance. We further validated microbiome-related predictions by showing a high replication rate in two geographically independent cohorts7,8 that were not available to us when we trained the algorithms. We used feature attribution analysis9 to reveal specific dietary and bacterial interactions. We further demonstrate that some of these interactions might be causal, as some metabolites that we predicted to be positively associated with bread were found to increase after a randomized clinical trial of bread intervention. Overall, our results reveal potential determinants of more than 800 metabolites, paving the way towards a mechanistic understanding of alterations in metabolites under different conditions and to designing interventions for manipulating the levels of circulating metabolites. The levels of 1,251 metabolites are measured in 475 phenotyped individuals, and machine-learning algorithms reveal that diet and the microbiome are the determinants with the strongest predictive power for the levels of these metabolites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
困敦发布了新的文献求助10
3秒前
单薄的尔烟完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
哇咔咔完成签到 ,获得积分10
6秒前
科研通AI6应助犹豫的星星采纳,获得10
6秒前
7秒前
Hannah发布了新的文献求助10
9秒前
大个应助ii采纳,获得10
9秒前
霜风款冬完成签到,获得积分10
10秒前
JJ完成签到 ,获得积分10
10秒前
10秒前
尹文发布了新的文献求助10
11秒前
念柏完成签到,获得积分10
13秒前
chloe完成签到,获得积分10
13秒前
一一完成签到 ,获得积分20
14秒前
归海梦岚完成签到,获得积分10
15秒前
陆一完成签到 ,获得积分10
15秒前
18秒前
溯溯完成签到 ,获得积分10
20秒前
kentonchow应助ceeray23采纳,获得20
20秒前
21秒前
淡定从霜完成签到 ,获得积分10
22秒前
22秒前
晚安发布了新的文献求助10
24秒前
阳光的衫完成签到 ,获得积分10
26秒前
念柏发布了新的文献求助10
27秒前
斯文败类发布了新的文献求助10
27秒前
汉堡包应助zoey采纳,获得10
28秒前
28秒前
烧仙草之完成签到,获得积分10
28秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
NexusExplorer应助科研通管家采纳,获得10
29秒前
小马甲应助科研通管家采纳,获得10
29秒前
慕青应助科研通管家采纳,获得10
29秒前
MikuMiya发布了新的文献求助10
29秒前
FashionBoy应助害羞的鑫鹏采纳,获得10
29秒前
mieyy完成签到,获得积分10
29秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5385140
求助须知:如何正确求助?哪些是违规求助? 4507821
关于积分的说明 14029039
捐赠科研通 4417666
什么是DOI,文献DOI怎么找? 2426643
邀请新用户注册赠送积分活动 1419324
关于科研通互助平台的介绍 1397721