流入
流出
压力降
压力控制
流量控制(数据)
流量(数学)
水位下降(水文)
石油工程
计算机科学
环境科学
工程类
地质学
机械工程
岩土工程
机械
海洋学
计算机网络
地下水
物理
含水层
作者
Preston Fernandes,Zhuoyi Li,Donglin Zhu
出处
期刊:SPE Annual Technical Conference and Exhibition
日期:2009-10-04
被引量:50
摘要
Abstract Inflow Control Device, often referred to as equalizer, is a completion hardware that is deployed as a part of well completions aimed at distributing the inflow evenly. Even though the detail structures vary from one design to another, the principle for different inflow control devices is the same - restrict flow by creating additional pressure drop, and therefore balancing or equalizing wellbore pressure drop to achieve an evenly distributed flow profile along a horizontal well. With a more evenly distributed flow profile, one can reduce water or gas coning, sand production and solve other drawdown related production problems. In general, inflow control devices are not adjustable; once installed in the well, the location of the device and the relationship between rate and pressure drop are fixed. This makes the design of a well completion and inflow control devices extremely critical for production. Inflow control devices can be either beneficial or detrimental to production, strongly depending on the reservoir condition, well structure and completion design. Realizing that reservoir conditions will change during the life of a well, the impact of an inflow control device is a function of time. The inflow control devices sometimes can be overlooked if the design is only based on reservoir flow simulation. In this paper, we will investigate how and when an inflow control device should be used. An integrated analysis method of inflow (reservoir) and outflow (wellbore) is used to generate the flow profile of a horizontal well, and additional frictional pressure drop created by inflow control devices will be considered. Two conditions that result in production problems, wellbore pressure drop and breakthrough of unwanted fluids, will be addressed. The focus will be on when and how an inflow control device can optimize production. Examples at field conditions will be used to illustrate that it is critical to understand the reservoir conditions and wellbore dynamics together when designing a well completion with inflow control devices. Since uncertainty of reservoir condition always exists, backup plans and conservative designs are desirable. The observations from this study show that overdesigned inflow control devices will not just increase the cost of well completion, but also impact the well performance negatively.
科研通智能强力驱动
Strongly Powered by AbleSci AI