A regression approach to speech enhancement based on deep neural networks

人工神经网络 深度学习 深层神经网络 回归 循环神经网络 卷积神经网络 模式识别(心理学) 机器学习
作者
Yong Xu,Jun Du,Li-Rong Dai,Chin-Hui Lee
出处
期刊:IEEE Transactions on Audio, Speech, and Language Processing [Institute of Electrical and Electronics Engineers]
卷期号:23 (1): 7-19 被引量:841
标识
DOI:10.1109/taslp.2014.2364452
摘要

In contrast to the conventional minimum mean square error (MMSE)-based noise reduction techniques, we propose a supervised method to enhance speech by means of finding a mapping function between noisy and clean speech signals based on deep neural networks (DNNs). In order to be able to handle a wide range of additive noises in real-world situations, a large training set that encompasses many possible combinations of speech and noise types, is first designed. A DNN architecture is then employed as a nonlinear regression function to ensure a powerful modeling capability. Several techniques have also been proposed to improve the DNN-based speech enhancement system, including global variance equalization to alleviate the over-smoothing problem of the regression model, and the dropout and noise-aware training strategies to further improve the generalization capability of DNNs to unseen noise conditions. Experimental results demonstrate that the proposed framework can achieve significant improvements in both objective and subjective measures over the conventional MMSE based technique. It is also interesting to observe that the proposed DNN approach can well suppress highly nonstationary noise, which is tough to handle in general. Furthermore, the resulting DNN model, trained with artificial synthesized data, is also effective in dealing with noisy speech data recorded in real-world scenarios without the generation of the annoying musical artifact commonly observed in conventional enhancement methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
George完成签到,获得积分10
刚刚
sensen发布了新的文献求助10
1秒前
ding应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
2秒前
kkk发布了新的文献求助10
2秒前
Maestro_S应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
轻松梦芝发布了新的文献求助10
3秒前
3秒前
科研通AI5应助小生采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
薛如霜发布了新的文献求助10
3秒前
赘婿应助自由凝云采纳,获得10
4秒前
5秒前
李清湛发布了新的文献求助10
7秒前
8秒前
666完成签到,获得积分10
8秒前
Song发布了新的文献求助10
11秒前
sensen完成签到,获得积分20
12秒前
小石头发布了新的文献求助10
12秒前
12秒前
13秒前
风清扬驳回了852应助
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4440426
求助须知:如何正确求助?哪些是违规求助? 3912429
关于积分的说明 12150837
捐赠科研通 3559851
什么是DOI,文献DOI怎么找? 1954095
邀请新用户注册赠送积分活动 993835
科研通“疑难数据库(出版商)”最低求助积分说明 889161