Principal components analysis (PCA)

主成分分析 特征向量 校长(计算机安全) 协方差矩阵 协方差 多元统计 核主成分分析 变化(天文学) 统计 数学 计算机科学 差异(会计) 计量经济学 人工智能 物理 会计 核方法 业务 操作系统 量子力学 天体物理学 支持向量机
作者
Andrzej Maćkiewicz,Waldemar Ratajczak
出处
期刊:Computers & Geosciences [Elsevier]
卷期号:19 (3): 303-342 被引量:1353
标识
DOI:10.1016/0098-3004(93)90090-r
摘要

Principal Components Analysis (PCA) as a method of multivariate statistics was created before the Second World War. However, the wider application of this method only occurred in the 1960s, during the “Quantitative Revolution” in the Natural and Social Sciences. The main reason for this time-lag was the huge difficulty posed by calculations involving this method. Only with the advent and development of computers did the almost unlimited application of multivariate statistical methods, including principal components, become possible. At the same time, requirements arose for precise numerical methods concerning, among other things, the calculation of eigenvalues and eigenvectors, because the application of principal components to technical problems required absolute accuracy. On the other hand, numerous applications in Social Sciences gave rise to a significant increase in the ability to interpret these nonobservable variables, which is just what the principal components are. In the application of principal components, the problem is not only to do with their formal properties but above all, their empirical origins. The authors considered these two tendencies during the creation of the program for principal components. This program—entitled PCA—accompanies this paper. It analyzes consecutively, matrices of variance-covariance and correlations, and performs the following functions: - the determination of eigenvalues and eigenvectors of these matrices. - the testing of principal components. - the calculation of coefficients of determination between selected components and the initial variables, and the testing of these coefficients, - the determination of the share of variation of all the initial variables in the variation of particular components, - construction of a dendrite for the initial set of variables, - the construction of a dendrite for a selected pattern of the principal components, - the scatter of the objects studied in a selected coordinate system. Thus, the PCA program performs many more functions especially in testing and graphics, than PCA programs in conventional statistical packages. Included in this paper are a theoretical description of principal components, the basic rules for their interpretation and also statistical testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助ss采纳,获得10
刚刚
刚刚
羊羊羊完成签到,获得积分20
1秒前
小林完成签到,获得积分10
1秒前
1秒前
王干完成签到 ,获得积分10
2秒前
lxy完成签到,获得积分10
2秒前
2秒前
3秒前
aaaabc发布了新的文献求助20
3秒前
3秒前
3秒前
小蘑菇应助Hhbbb采纳,获得10
4秒前
蕾蕾大酱发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
江洋大盗发布了新的文献求助10
5秒前
6秒前
12366666发布了新的文献求助10
6秒前
郑郑发布了新的文献求助10
7秒前
孤存完成签到,获得积分10
7秒前
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
只争朝夕应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
Xinxxx应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
8秒前
大模型应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
寻础完成签到,获得积分20
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
8秒前
大个应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
Xinxxx应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
Harden发布了新的文献求助20
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532287
求助须知:如何正确求助?哪些是违规求助? 4621035
关于积分的说明 14576445
捐赠科研通 4560926
什么是DOI,文献DOI怎么找? 2498991
邀请新用户注册赠送积分活动 1478963
关于科研通互助平台的介绍 1450218