Illumination-Adaptive Unpaired Low-Light Enhancement

人工智能 计算机科学 计算机视觉 能见度 像素 背景(考古学) 光场 图像质量 模式识别(心理学) 图像(数学) 生物 光学 物理 古生物学
作者
Praveen Kandula,Maitreya Suin,A. N. Rajagopalan
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (8): 3726-3736 被引量:8
标识
DOI:10.1109/tcsvt.2023.3241162
摘要

Supervised networks address the task of low-light enhancement using paired images. However, collecting a wide variety of low-light/clean paired images is tedious as the scene needs to remain static during imaging. In this paper, we propose an unsupervised low-light enhancement network using context-guided illumination-adaptive norm (CIN). Inspired by coarse to fine methods, we propose to address this task in two stages. In stage- I, a pixel amplifier module (PAM) is used to generate a coarse estimate with an overall improvement in visibility and aesthetic quality. Stage- II further enhances the saturated dark pixels and scene properties of the image using CIN. Different ablation studies show the importance of PAM and CIN in improving the visible quality of the image. Next, we propose a region-adaptive single input multiple output (SIMO) model that can generate multiple enhanced images from a single low-light image. The objective of SIMO is to let users choose the image of their liking from a pool of enhanced images. Human subjective analysis of SIMO results shows that the distribution of preferred images varies, endorsing the importance of SIMO-type models. Lastly, we propose a low-light road scene (LLRS) dataset having an unpaired collection of low-light and clean scenes. Unlike existing datasets, the clean and low-light scenes in LLRS are real and captured using fixed camera settings. Exhaustive comparisons on publicly available datasets, and the proposed dataset reveal that the results of our model outperform prior art quantitatively and qualitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可可发布了新的文献求助10
刚刚
2秒前
weige发布了新的文献求助10
3秒前
3秒前
彭a发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
刘氓发布了新的文献求助30
4秒前
4秒前
小凯发布了新的文献求助10
4秒前
carl完成签到 ,获得积分10
5秒前
5秒前
5秒前
556677y完成签到,获得积分20
6秒前
博修发布了新的文献求助10
6秒前
wanci应助天上白玉京采纳,获得10
6秒前
大模型应助今天几点睡采纳,获得10
6秒前
糖豆豆完成签到,获得积分20
7秒前
无花果应助Leo采纳,获得10
8秒前
chenny完成签到,获得积分20
9秒前
猪猪hero应助优秀的白筠采纳,获得10
10秒前
10秒前
搜集达人应助你好采纳,获得10
11秒前
高大叫兽发布了新的文献求助10
11秒前
13秒前
13秒前
希望天下0贩的0应助小凯采纳,获得10
13秒前
丘比特应助刘氓采纳,获得30
13秒前
Weiyu发布了新的文献求助20
14秒前
15秒前
幽芊细雨完成签到,获得积分10
16秒前
万能图书馆应助xxx采纳,获得10
16秒前
今天几点睡完成签到,获得积分20
16秒前
16秒前
FashionBoy应助Timezzz采纳,获得10
17秒前
17秒前
qifa发布了新的文献求助10
17秒前
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4052549
求助须知:如何正确求助?哪些是违规求助? 3590803
关于积分的说明 11411408
捐赠科研通 3317144
什么是DOI,文献DOI怎么找? 1824538
邀请新用户注册赠送积分活动 896170
科研通“疑难数据库(出版商)”最低求助积分说明 817298