清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Robust Deep Convolutional Dictionary Model with Alignment Assistance for Multi-Contrast MRI Super-resolution

人工智能 计算机科学 对比度(视觉) 计算机视觉 卷积神经网络 超分辨率 模式识别(心理学) 分辨率(逻辑) 图像分辨率 图像(数学)
作者
Pengcheng Lei,Miaomiao Zhang,Faming Fang,Guixu Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2025.3563523
摘要

Multi-contrast magnetic resonance imaging (MCMRI) super-resolution (SR) methods aims to leverage the complementary information present in multi-contrast images. However, existing methods encounter several limitations. Firstly, most current networks fail to appropriately model the correlations of multi-contrast images and lack certain interpretability. Secondly, they often overlook the negative impact of spatial misalignment between modalities in clinical practice. Thirdly, existing methods do not effectively constrain the complementary information learned between multi-contrast images, resulting in information redundancy and limiting their model performance. In this paper, we propose a robust alignment-assisted multi-contrast convolutional dictionary (A2-CDic) model to address these challenges. Specifically, we develop an observation model based on convolutional sparse coding to explicitly represent multi-contrast images as common (e.g., consistent textures) and unique (e.g., inconsistent structures and contrasts) components. Considering there are spatial misalignments in real-world multi-contrast images, we incorporate a spatial alignment module to compensate for the misaligned structures. This approach enables the proposed model to fully exploit the valuable information in the reference image while mitigating interference from inconsistent information. We employ the proximal gradient algorithm to optimize the model and unroll the iterative steps into a multi-scale convolutional dictionary network. Furthermore, we utilize mutual information losses to constrain the extracted common and unique components. This constraint reduces the redundancy between the decomposed components, allowing each sub-module to learn more representative features. We evaluate our model on four publicly available datasets comprising internal, external, spatially aligned, and misaligned MCMRI images. The experimental results demonstrate that our model surpasses existing state-of-the-art MCMRI SR methods in terms of both generalization ability and overall performance. Code is available at https://github.com/lpcccc-cv/A2-CDic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张亚慧完成签到 ,获得积分10
20秒前
mz完成签到 ,获得积分10
22秒前
金戈完成签到,获得积分10
40秒前
42秒前
47秒前
cdercder完成签到,获得积分0
52秒前
大方的笑萍完成签到 ,获得积分10
55秒前
57秒前
zjq完成签到 ,获得积分10
59秒前
乐观的星月完成签到 ,获得积分10
1分钟前
凉面完成签到 ,获得积分10
1分钟前
1分钟前
玩命的毛衣完成签到 ,获得积分10
1分钟前
现代完成签到,获得积分10
1分钟前
研友_Z7grXZ完成签到,获得积分10
1分钟前
natsu401完成签到 ,获得积分10
2分钟前
zzgpku完成签到,获得积分0
2分钟前
小二郎应助xiaoyi采纳,获得10
2分钟前
乐乐应助oneinlove采纳,获得30
2分钟前
liuqi完成签到 ,获得积分10
2分钟前
2分钟前
河工大nature发表者完成签到 ,获得积分10
2分钟前
oneinlove发布了新的文献求助30
2分钟前
今后应助研友_Z7grXZ采纳,获得10
2分钟前
天真的乌完成签到 ,获得积分10
2分钟前
科研通AI2S应助yy采纳,获得10
2分钟前
姚美阁完成签到 ,获得积分10
2分钟前
dong完成签到 ,获得积分10
3分钟前
oneinlove完成签到,获得积分10
3分钟前
余味应助LZQ采纳,获得10
3分钟前
3分钟前
董昌铭发布了新的文献求助10
3分钟前
3分钟前
xiaoyi发布了新的文献求助10
3分钟前
tufei完成签到,获得积分10
3分钟前
3分钟前
心怡发布了新的文献求助10
4分钟前
慕青应助xiaoyi采纳,获得10
4分钟前
研友_ZzrWKZ完成签到 ,获得积分10
4分钟前
ccc完成签到 ,获得积分10
4分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776014
求助须知:如何正确求助?哪些是违规求助? 3321534
关于积分的说明 10206239
捐赠科研通 3036609
什么是DOI,文献DOI怎么找? 1666392
邀请新用户注册赠送积分活动 797395
科研通“疑难数据库(出版商)”最低求助积分说明 757805