亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic Generation of Liver Virtual Models with Artificial Intelligence

医学 管道(软件) 队列 放射科 人工智能 手术计划 内科学 计算机科学 程序设计语言
作者
Omar Ali,Alexandre Bône,Caterina Accardo,Belkacem Acidi,A. Facque,P Valleur,Chady Salloum,Marc-Michel Rohé,Irène Vignon-Clémentel,Éric Vibert
出处
期刊:Annals of Surgery [Lippincott Williams & Wilkins]
标识
DOI:10.1097/sla.0000000000006722
摘要

Objective: The clinical aim of this work is to predict intraoperative LRC from preoperative CT scans only. Summary of Background Data: Liver resection (LR) is the most prevalent curative treatment for primary liver cancer, yet overall mortality/morbidity rates remain elevated. The conventional definition and classification of LR complexity (LRC) lack inclusion of the disease-induced 3D anatomical surgery complexity. Methods: 3D models of the organ, tumors and blood vessels were generated from Deep Learning models trained on patients CT scans. The surgeons’ expertise on which anatomical factors lead to LRC was translated into a new anatomical frame of reference around the Hepatic Central Zone (HCZ). A fully automatic pipeline to generate the HCZ and quantify the tumors position relative to it was assessed. An AI model was then trained to predict LRC from a patient cohort for whom LRC was annotated at the end of each surgery. The AI-prediction was finally compared to prediction of surgeons that only saw the patient preoperative CT scan. Results: The 3D reconstructions are successfully evaluated on benchmark datasets. The HCZ is accurately generated for a variety of atypical vascular anatomies (dice score 82±4.6%). The automatic pipeline is successfully run on a 145 HCC patient cohort. The predicted LRC outperforms the surgeons’ individual and combined anticipated complexities (accuracy and AUC scores: 79.4±3.4% and 85.1±3.2% respectively). Conclusion: This automatic digital tool accurately predicts intraoperative LRC and paves the way for an innovative oncology surgery planning. This tool could help orient patients towards appropriate medical centers depending on the predicted LRC level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
Milton_z完成签到 ,获得积分0
8秒前
10秒前
wlq完成签到,获得积分10
12秒前
22秒前
24秒前
ding应助xhDoc采纳,获得30
26秒前
淡定的翠霜完成签到 ,获得积分10
35秒前
梦华完成签到 ,获得积分10
36秒前
为十完成签到 ,获得积分10
41秒前
42秒前
酷波er应助zcl采纳,获得10
44秒前
trq1007完成签到,获得积分20
47秒前
阿宁关注了科研通微信公众号
47秒前
fffffan发布了新的文献求助10
47秒前
48秒前
50秒前
iacir33完成签到,获得积分10
51秒前
科目三应助trq1007采纳,获得10
52秒前
53秒前
54秒前
星辰大海应助fffffan采纳,获得10
54秒前
阿宁发布了新的文献求助10
59秒前
一碗小米饭完成签到,获得积分10
1分钟前
FashionBoy应助南草北树采纳,获得10
1分钟前
aDou完成签到 ,获得积分10
1分钟前
thenafly完成签到,获得积分10
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301742
求助须知:如何正确求助?哪些是违规求助? 4449232
关于积分的说明 13848006
捐赠科研通 4335250
什么是DOI,文献DOI怎么找? 2380243
邀请新用户注册赠送积分活动 1375213
关于科研通互助平台的介绍 1341252