Label-free Detection of Urine Extracellular Vesicles from Duchenne Muscular Dystrophy Patients Using Surface-Enhanced Raman Spectroscopy Combined with Machine Learning Models

杜氏肌营养不良 细胞外小泡 尿 拉曼光谱 mdx鼠标 细胞外 化学 生物医学工程 医学 生物 生物化学 肌营养不良蛋白 内科学 物理 光学 细胞生物学
作者
Archana Rajavel,Jayasree Kumar,E. S. Narayanan,Ramajayam Anbazhagan,Rajapandiyan Panneerselvam,R. Jayashree,Viswanathan Venkataraman,Raja Natesan Sella
出处
期刊:ACS omega [American Chemical Society]
标识
DOI:10.1021/acsomega.5c00838
摘要

Duchenne muscular dystrophy (DMD) is a neuromuscular disease that affects males in the pediatric age group. Currently, there is no painless, cost-effective prognostic method available to monitor DMD progression. The main hypothesis of this study was that the biochemical composition of extracellular vesicles (EVs) isolated from the urine of DMD patients can be distinctly differentiated from that of healthy controls using surface-enhanced Raman Spectroscopy (SERS) combined with machine learning models. This differentiation is expected to provide a noninvasive, rapid, and accurate diagnostic tool for the early detection, staging, and monitoring of DMD by identifying the molecular signatures captured by SERS and leveraging the analytical power of machine learning algorithms. We collected fasting morning urine samples from 52 DMD patients and 17 healthy controls and isolated EVs using a Total Exosome Isolation kit. The SERS substrates are prepared using silver nanoparticles, which were employed to capture the molecular fingerprints of the EVs with uniformity and reproducibility, achieving relative standard deviation values of 7.3% and 8.9%. We observed alterations in phenylalanine and α-helical proteins in patients with DMD compared to controls. These spectral data were analyzed using PCA, Support Vector Machines, and k-Nearest Neighbor (KNN) algorithms to identify distinct patterns and stage DMD based on biochemical composition. Our integrated approach demonstrated 60% sensitivity and 100% specificity in distinguishing DMD patients from healthy controls, highlighting the potential of SERS and KNN for noninvasive, accurate, and rapid diagnosis of DMD. This method offers a promising avenue for early detection and personalized treatment strategies, ultimately improving patient outcomes and quality of life.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
D515驳回了fang应助
2秒前
高越发布了新的文献求助30
4秒前
LL完成签到 ,获得积分10
4秒前
乐乐乐乐乐乐应助wjwless采纳,获得10
5秒前
wushuang完成签到,获得积分10
5秒前
朴实的凡阳完成签到,获得积分10
6秒前
6秒前
大胆的小白菜完成签到,获得积分10
6秒前
火星天完成签到,获得积分10
6秒前
Jason完成签到,获得积分10
6秒前
苏嘉发布了新的文献求助10
8秒前
不改颜色的孤星完成签到,获得积分10
10秒前
我我我完成签到,获得积分10
10秒前
原鑫完成签到,获得积分10
11秒前
马文发布了新的文献求助10
11秒前
billkin完成签到,获得积分10
12秒前
火星上的山柳应助yuan采纳,获得10
13秒前
多多完成签到,获得积分10
13秒前
高越完成签到,获得积分10
14秒前
zjt1111111完成签到,获得积分20
14秒前
arui完成签到,获得积分10
15秒前
水上书完成签到,获得积分10
16秒前
YZ完成签到,获得积分10
16秒前
wjwless完成签到,获得积分20
18秒前
song完成签到 ,获得积分10
19秒前
zjt1111111发布了新的文献求助10
19秒前
19秒前
21秒前
泡芙完成签到 ,获得积分10
22秒前
美丽的安完成签到,获得积分10
22秒前
22秒前
Tuniverse_完成签到 ,获得积分10
23秒前
沉醉完成签到 ,获得积分10
25秒前
美丽的安发布了新的文献求助10
26秒前
27秒前
周萌完成签到 ,获得积分10
29秒前
30秒前
31秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4043970
求助须知:如何正确求助?哪些是违规求助? 3581778
关于积分的说明 11384475
捐赠科研通 3308966
什么是DOI,文献DOI怎么找? 1821276
邀请新用户注册赠送积分活动 893613
科研通“疑难数据库(出版商)”最低求助积分说明 815776