Prediction of prognosis and treatment response in ovarian cancer patients from histopathology images using graph deep learning: a multicenter retrospective study

医学 内科学 肿瘤科 卵巢癌 组织病理学 回顾性队列研究 人工智能 癌症 放射科 病理 计算机科学
作者
Zijian Yang,Yibo Zhang,Lili Zhuo,Kaidi Sun,Fanling Meng,Meng Zhou,Jie Sun
出处
期刊:European Journal of Cancer [Elsevier BV]
卷期号:199: 113532-113532 被引量:17
标识
DOI:10.1016/j.ejca.2024.113532
摘要

Abstract

Background

Ovarian cancer (OV) is a prevalent and deadly disease with high mortality rates. The development of accurate prognostic tools and personalized therapeutic strategies is crucial for improving patient outcomes.

Methods

A graph-based deep learning model, the Ovarian Cancer Digital Pathology Index (OCDPI), was introduced to predict prognosis and response to adjuvant therapy using hematoxylin and eosin (H&E)-stained whole-slide images (WSIs). The OCDPI was developed using formalin-fixed, paraffin-embedded (FFPE) WSIs from the TCGA-OV cohort, and was externally validated in two independent cohorts from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) and Harbin Medical University Cancer Hospital (HMUCH).

Results

The OCDPI showed prognostic ability for overall survival prediction in the PLCO (HR, 1.916; 95% CI, 1.380–2.660; log-rank test, P < 0.001) and HMUCH (HR, 2.796; 95% CI, 1.404–5.568; log-rank test, P = 0.0022) cohorts. Patients with low OCDPI experienced better survival benefits and lower recurrence rates following adjuvant therapy compared to those with high OCDPI. Multivariable analyses, adjusting for clinicopathological factors, consistently identified OCDPI as an independent prognostic factor across all cohorts (all P < 0.05). Furthermore, OCDPI performed well in patients with low-grade tumors or fresh-frozen slides, and could differentiate between HRD-deficient or HRD-intact patients with and without sensitivity to adjuvant therapy.

Conclusion

The results from this multicenter cohort study indicate that the OCDPI may serve as a valuable and labor-saving tool to improve prognostic and predictive clinical decision-making in patients with OV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123456完成签到 ,获得积分10
2秒前
aaa完成签到,获得积分10
3秒前
可罗雀完成签到,获得积分10
4秒前
大个应助科研通管家采纳,获得30
4秒前
Owen应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得200
4秒前
Akim应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得20
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
back you up应助科研通管家采纳,获得50
5秒前
大模型应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
阿飘应助科研通管家采纳,获得10
5秒前
pagoda发布了新的文献求助20
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
8秒前
冷酷洋葱完成签到,获得积分10
9秒前
10秒前
YG完成签到,获得积分10
10秒前
alai发布了新的文献求助10
11秒前
天天快乐应助CGW采纳,获得10
12秒前
13秒前
ct551144发布了新的文献求助10
14秒前
周小笛完成签到 ,获得积分10
15秒前
丘比特应助CGW采纳,获得10
16秒前
moon发布了新的文献求助10
16秒前
稳重秋寒发布了新的文献求助10
17秒前
FashionBoy应助leeleetyo采纳,获得10
18秒前
pagoda完成签到,获得积分10
19秒前
20秒前
有长进完成签到,获得积分20
21秒前
张舒涵完成签到,获得积分10
21秒前
王淳完成签到 ,获得积分10
22秒前
alai完成签到,获得积分10
22秒前
zxy完成签到,获得积分10
27秒前
冯尔蓝完成签到,获得积分10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323510
关于积分的说明 10214551
捐赠科研通 3038674
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315