Unlocking the therapeutic potential of drug combinations through synergy prediction using graph transformer networks

概化理论 计算机科学 图形 药物基因组学 变压器 药品 交叉验证 数据挖掘 人工智能 模式识别(心理学) 生物信息学 数学 理论计算机科学 电压 统计 生物 药理学 物理 量子力学
作者
Waleed Alam,Hilal Tayara,Kil To Chong
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 108007-108007 被引量:9
标识
DOI:10.1016/j.compbiomed.2024.108007
摘要

Drug combinations are frequently used to treat cancer to reduce side effects and increase efficacy. The experimental discovery of drug combination synergy is time-consuming and expensive for large datasets. Therefore, an efficient and reliable computational approach is required to investigate these drug combinations. Advancements in deep learning can handle large datasets with various biological problems. In this study, we developed a SynergyGTN model based on the Graph Transformer Network to predict the synergistic drug combinations against an untreated cancer cell line expression profile. We represent the drug via a graph, with each node and edge of the graph containing nine types of atomic feature vectors and four bonds features, respectively. The cell lines represent based on their gene expression profiles. The drug graph was passed through the GTN layers to extract a generalized feature map for each drug pairs. The drug pair extracted features and cell-line gene expression profiles were concatenated and subsequently subjected to processing through multiple densely connected layers. SynergyGTN outperformed the state-of-the-art methods, with a receiver operating characteristic area under the curve improvement of 5% on the 5-fold cross-validation. The accuracy of SynergyGTN was further verified through three types of cross-validation tests strategies namely leave-drug-out, leave-combination-out, and leave-tissue-out, resulting in improvement in accuracy of 8%, 1%, and 2%, respectively. The Astrazeneca Dream dataset was utilized as an independent dataset to validate and assess the generalizability of the proposed method, resulting in an improvement in balanced accuracy of 13%. In conclusion, SynergyGTN is a reliable and efficient computational approach for predicting drug combination synergy in cancer treatment. Finally, we developed a web server tool to facilitate the pharmaceutical industry and researchers, as available at: http://nsclbio.jbnu.ac.kr/tools/SynergyGTN/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Feifei133发布了新的文献求助10
2秒前
4秒前
曼珠沙华完成签到 ,获得积分10
6秒前
HEAUBOOK应助再沉默采纳,获得10
6秒前
科研通AI5应助聪慧的眼神采纳,获得10
7秒前
7秒前
dlfg发布了新的文献求助10
7秒前
明理的延恶完成签到,获得积分10
8秒前
研友_VZG7GZ应助KK采纳,获得10
8秒前
10秒前
CodeCraft应助Feifei133采纳,获得10
10秒前
10秒前
11秒前
asdghr完成签到,获得积分10
11秒前
Arthur完成签到 ,获得积分10
14秒前
李健的小迷弟应助qianqiu采纳,获得10
15秒前
申哈哈发布了新的文献求助10
17秒前
18秒前
20秒前
20秒前
22秒前
23秒前
24秒前
24秒前
平常平松发布了新的文献求助10
27秒前
Winston发布了新的文献求助10
27秒前
28秒前
阿辉发布了新的文献求助10
28秒前
allrubbish完成签到,获得积分10
30秒前
30秒前
31秒前
Doc_Ocean完成签到,获得积分10
31秒前
不安的妙之完成签到,获得积分10
32秒前
11完成签到 ,获得积分10
33秒前
36秒前
齐桉完成签到 ,获得积分10
37秒前
科研通AI2S应助果果采纳,获得10
37秒前
海格完成签到,获得积分10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782096
求助须知:如何正确求助?哪些是违规求助? 3327562
关于积分的说明 10232109
捐赠科研通 3042513
什么是DOI,文献DOI怎么找? 1670006
邀请新用户注册赠送积分活动 799585
科研通“疑难数据库(出版商)”最低求助积分说明 758825