已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Remote Distance Binocular Vision Ranging Method Based on Improved YOLOv5

测距 人工智能 计算机视觉 双眼视觉 计算机科学 距离测量 激光测距 双眼视差 光学 遥感 地质学 物理 激光器 电信
作者
Biaobiao Wei,Jun Liu,Ao Li,Huiliang Cao,Chenguang Wang,Chong Shen,Jun Tang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (7): 11328-11341 被引量:2
标识
DOI:10.1109/jsen.2024.3359671
摘要

In the process of using binocular vision for ranging, target detection and image matching are the key to the ranging process. To address the problems of low target detection accuracy and high distance ranging error in traditional binocular ranging methods, this article proposes an improved binocular vision ranging algorithm based on YOLOv5. First, the binocular camera is calibrated by the checkerboard calibration method, and the imaging plane of the binocular stereo vision is corrected to the ideal structure by the epipolar correction algorithm. Then, the target is detected by the improved YOLOv5 algorithm. This method uses the SimOTA label allocation strategy to further reduce the training time and computational complexity of the model and introduces ${L}_{\text {EIOU}}$ to solve the problem of the unclear definition of the length–width ratio in the original ${L}_{\text {CIOU}}$ , further improving the speed and accuracy of convergence. Moreover, focal loss is added to compensate for the imbalanced contribution of high- and low-quality samples in the gradient. Next, using the improved multiscale stereo matching algorithm, the speed of the matching algorithm in large images is enhanced. After the initial matching point pairs have been obtained, the quadratic surface fitting method is used to obtain the subpixel disparity. The depth value of the target center point is obtained by conversion from the 2-D pixel coordinate system to the 3-D space coordinate system. A ranging experiment was carried out in the range of 20–200 m. The mean absolute error (MAE) index of the ranging result of the proposed method is only 2.85 m, which verifies the effectiveness of the improved algorithm in both its theoretical and experimental aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
自由的若剑完成签到 ,获得积分10
1秒前
雨雨雨雨雨文完成签到 ,获得积分10
2秒前
3秒前
petrichor完成签到 ,获得积分10
3秒前
蕾蕾发布了新的文献求助10
4秒前
袁青寒完成签到,获得积分10
4秒前
4秒前
新手小帆发布了新的文献求助10
6秒前
半两月光发布了新的文献求助10
7秒前
UACurry发布了新的文献求助10
8秒前
aprise完成签到 ,获得积分10
9秒前
wu发布了新的文献求助10
9秒前
celine完成签到 ,获得积分10
9秒前
petrichor完成签到 ,获得积分10
10秒前
defvfv发布了新的文献求助10
11秒前
蕾蕾完成签到,获得积分10
12秒前
14秒前
14秒前
fjh应助半两月光采纳,获得30
15秒前
18秒前
泓凯骏发布了新的文献求助10
21秒前
喜悦夏青发布了新的文献求助10
21秒前
22秒前
桐桐应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
马文杰完成签到 ,获得积分10
24秒前
田様应助Claudia采纳,获得10
26秒前
wq完成签到,获得积分10
27秒前
无限达完成签到,获得积分10
28秒前
闪闪书桃完成签到,获得积分20
28秒前
31秒前
mov完成签到,获得积分10
31秒前
闪闪书桃发布了新的文献求助30
32秒前
超帅慕晴完成签到,获得积分10
34秒前
科研通AI5应助小古采纳,获得10
34秒前
ZHH发布了新的文献求助10
37秒前
37秒前
momo完成签到,获得积分10
38秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795454
求助须知:如何正确求助?哪些是违规求助? 3340458
关于积分的说明 10300316
捐赠科研通 3057032
什么是DOI,文献DOI怎么找? 1677356
邀请新用户注册赠送积分活动 805385
科研通“疑难数据库(出版商)”最低求助积分说明 762491