Multi-criteria group decision making based on graph neural networks in Pythagorean fuzzy environment

群体决策 托普西斯 勾股定理 计算机科学 人工智能 熵(时间箭头) 理想溶液 机器学习 加权和模型 图形 模糊逻辑 数据挖掘 影响图 理论计算机科学 数学 决策树 运筹学 法学 物理 热力学 量子力学 政治学 几何学
作者
Zhenhua Meng,Rongheng Lin,Budan Wu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:242: 122803-122803 被引量:12
标识
DOI:10.1016/j.eswa.2023.122803
摘要

Given that the majority of existing approaches for multi-criteria group decision making (MCGDM) rely solely on the preferences of decision makers (DMs) and fail to consider the various relationships between alternatives, this paper attempts to model the relevant relational structures using graphs and introduce the concept of graph neural networks (GNNs) in the context of group decision-making. By leveraging the powerful expressive capabilities of GNNs, the aim is to mine additional information pertinent to the decision-making process and screen out alternatives for the final decision. To begin, we provide a mapping of MCGDM to the graph domain and construct a corresponding relation graph among alternatives. Additionally, to deal with uncertain or vague information, we transform the group decision-making problem into a Pythagorean fuzzy environment and define a novel measure of entropy specifically designed for Pythagorean fuzzy sets (PFSs) in the entropy weight model to determine the weights of criteria. Simultaneously, we propose a new distance measure for PFSs, which is then applied to the extended Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method to rank alternatives. Furthermore, we develop a GNNs-based Pythagorean fuzzy MCGDM approach that incorporates the aforementioned techniques for group decision-making. Finally, to validate the effectiveness and superiority of this approach, we employ it to address a supplier selection issue. Compared with baseline group decision-making approaches, our approach can indeed capture the relationships among alternatives in complex group decision-making scenarios and outperforms the best-performing baseline by nearly 2.8% in terms of ranking accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
98484发布了新的文献求助30
1秒前
万能图书馆应助hero采纳,获得10
2秒前
Estrella发布了新的文献求助10
3秒前
冰红茶发布了新的文献求助10
4秒前
爆米花应助学习采纳,获得10
4秒前
丰富广缘发布了新的文献求助10
5秒前
Akim应助彩色的访文采纳,获得50
5秒前
光亮的立果完成签到,获得积分10
5秒前
leiyunfeng完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
小HO完成签到,获得积分10
7秒前
科研通AI5应助羊冰安采纳,获得10
7秒前
CNY完成签到 ,获得积分10
7秒前
zxn完成签到,获得积分10
8秒前
慕青应助红尘采纳,获得10
9秒前
wgm完成签到,获得积分10
9秒前
10秒前
香蕉觅云应助舒适的书雪采纳,获得10
10秒前
兔兔跑路完成签到,获得积分10
10秒前
nn发布了新的文献求助10
11秒前
11秒前
11秒前
Wei发布了新的文献求助10
13秒前
孝艺发布了新的文献求助10
13秒前
连虎刚应助张朝程采纳,获得10
13秒前
乔治完成签到,获得积分10
13秒前
炙热晓露完成签到,获得积分10
14秒前
WANG发布了新的文献求助10
15秒前
刘攀旺完成签到,获得积分10
15秒前
松鼠完成签到 ,获得积分10
15秒前
朴实小夏完成签到,获得积分10
15秒前
15秒前
小二郎应助paradeYH采纳,获得10
16秒前
Brian发布了新的文献求助80
16秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805997
求助须知:如何正确求助?哪些是违规求助? 3350835
关于积分的说明 10351617
捐赠科研通 3066714
什么是DOI,文献DOI怎么找? 1684126
邀请新用户注册赠送积分活动 809309
科研通“疑难数据库(出版商)”最低求助积分说明 765432