Low-Temperature Direct Bonding of Sputtered Nanocrystalline Ag Film for Power Electronic Packaging: Bonding Mechanism, Thermal Characteristics, and Reliability

纳米晶材料 材料科学 可靠性(半导体) 电子包装 阳极连接 直接结合 热的 引线键合 机制(生物学) 光电子学 工程物理 电气工程 复合材料 功率(物理) 纳米技术 工程类 热力学 炸薯条 物理 哲学 认识论
作者
Dashi Lu,Xiuqi Wang,Hao Pan,Xiaoxiong Zheng,Mingyu Li,Hongjun Ji
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:39 (5): 6040-6051
标识
DOI:10.1109/tpel.2024.3368666
摘要

Nanocrystalline metal films are emerging as die-attach materials for power electronic packaging owing to their organic-free nature and capacity for low-temperature bonding. In this study, we proposed magnetron-sputtered nanocrystalline Ag (Nano-Ag) film as a die-attach material for power device packaging. Low-temperature direct bonding of Nano-Ag films was achieved at 200 °C in air, utilizing the thermal instability of Nano-Ag. Significant grain growth in Nano-Ag films facilitated the interfacial voids shrinkage, ultimately enabling high-quality bonding of Nano-Ag films. The SiC/Nano-Ag/direct-bonding copper (DBC) bonding structure demonstrated exceptional reliability after the thermal aging and harsh thermal cycling shocks, maintaining a high shear strength of 76.9 MPa after aging at 250 °C for 500 h. The thermal resistance ( R th ) measurement revealed that the Nano-Ag film die-attach layer exhibited a low R th of 0.10 K/W, representing a reduction of 37.5% than the Ag nano-paste. Furthermore, the SiC devices using Nano-Ag film as die-attach material showed excellent electronic property and power cycling reliability, achieving a power cycling life of 19 240 cycles at a temperature swing of 150 °C. These results indicate that this organic-free and dense Nano-Ag film is a promising die-attach material for enhancing the electronic property, thermal performance, and power cycling reliability of power modules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助QIN采纳,获得10
7秒前
希望天下0贩的0应助晓宇采纳,获得30
10秒前
logic22完成签到,获得积分10
12秒前
顾矜应助风中的元灵采纳,获得10
14秒前
CodeCraft应助晓宇采纳,获得10
19秒前
默默完成签到 ,获得积分10
19秒前
22秒前
22秒前
英俊的铭应助晓宇采纳,获得10
28秒前
都是发布了新的文献求助10
28秒前
QIN完成签到,获得积分10
30秒前
李念给李念的求助进行了留言
37秒前
37秒前
40秒前
陌路发布了新的文献求助10
41秒前
HJJHJH发布了新的文献求助20
43秒前
领导范儿应助小高同学采纳,获得10
43秒前
思源应助认真的汉堡采纳,获得10
45秒前
情怀应助晓宇采纳,获得10
45秒前
PTDRA发布了新的文献求助10
47秒前
科研通AI2S应助HJJHJH采纳,获得10
48秒前
ChrisKim完成签到,获得积分10
49秒前
56秒前
清爽的柚子完成签到 ,获得积分10
1分钟前
cdercder发布了新的文献求助10
1分钟前
1分钟前
hunbaekkkkk完成签到 ,获得积分10
1分钟前
1分钟前
yan完成签到,获得积分10
1分钟前
1分钟前
Liuu完成签到,获得积分10
1分钟前
1分钟前
yan发布了新的文献求助10
1分钟前
kukudou2发布了新的文献求助10
1分钟前
1分钟前
尘默发布了新的文献求助10
1分钟前
1分钟前
CX完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778573
求助须知:如何正确求助?哪些是违规求助? 3324177
关于积分的说明 10217311
捐赠科研通 3039383
什么是DOI,文献DOI怎么找? 1668032
邀请新用户注册赠送积分活动 798482
科研通“疑难数据库(出版商)”最低求助积分说明 758385