已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Modelling landslide susceptibility prediction: A review and construction of semi-supervised imbalanced theory

山崩 样品(材料) 采样(信号处理) 比例(比率) 计算机科学 人工智能 统计 机器学习 地质学 岩土工程 地图学 数学 地理 化学 滤波器(信号处理) 色谱法 计算机视觉
作者
Faming Huang,Haowen Xiong,Shui‐Hua Jiang,Chi Yao,Xuanmei Fan,Filippo Catani,Zhilu Chang,Xiaoting Zhou,Jinsong Huang,K Y Liu
出处
期刊:Earth-Science Reviews [Elsevier BV]
卷期号:250: 104700-104700 被引量:61
标识
DOI:10.1016/j.earscirev.2024.104700
摘要

Fully supervised machine learning models are widely applied for landslide susceptibility prediction (LSP), mainly using landslide and non-landslide samples as output variables and related conditioning factors as input variables. However, there are many uncertain issues in LSP modelling; for example, known landslide samples may have errors, non-landslide samples randomly selected from the whole study area are not accurate, the ratio of landslide to non-landslide samples set as 1:1 is not consistent with the actual landslide distribution characteristics, it is unreasonable to assign samples labelled non-landslide a probability of 0, and it is difficult to achieve a comprehensive assessment of LSP performance. Based on a review of the literature, we innovatively propose a semi-supervised imbalanced theory to overcome these uncertain issues. First, based on landslide samples (occurrence probability assigned 1), randomly selected non-landslide samples (occurrence probability assigned 0), and slope units divided by the multi-scale segmentation method and related conditioning factors, a supervised machine learning model is constructed and used to predict the initial landslide susceptibility indexes (LSIs), which are then classified as very low, low, moderate, high and very high landslide susceptibility levels (LSLs). Second, the landslide samples with LSLs classified as very low are removed to reduce errors in landslides, and non-landslide samples are randomly selected from the low and very low LSL groups to ensure the accuracy of non-landslides. We refer to this type of sample selection as a semi-supervised learning strategy. Third, the sampling ratio of landslide to non-landslide samples is successively set to values from 1:1 to 1:200, the initial LSIs are assigned as the labels of the corresponding non-landslide samples, and the labels of landslide samples are still assigned the value 1. We call these processes as the imbalanced sampling strategy. Fourth, we use the labelled landslide and non-landslide samples to train and test the supervised machine learning again. Finally, the optimal ratio of landslide samples to non-landslide samples can be determined to obtain the final LSP results through comparisons of LSP accuracy and LSI distribution characteristics under different sampling ratios. Jiujiang City in Jiangxi Province of China is the study area. The results show that the ROC and prediction rate accuracies of semi-supervised imbalanced RF model gradually increase from 0.979 and 0.853 to 0.990 and 0.912, respectively, with the imbalanced ratios rise from 1:1 to 1:160. Then both accuracies tend to converge as the ratio rises from 160 to 200. Hence, the LSP results of the semi-supervised imbalanced theory are efficient when the ratio of landslides to non-landslides is1:160. We conclude that the proposed theory significantly improves the theoretical basis of LSP modelling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
MOMO完成签到,获得积分10
2秒前
mx发布了新的文献求助30
5秒前
司空豁发布了新的文献求助10
6秒前
8秒前
胡蝶完成签到 ,获得积分10
9秒前
夜夜笙歌嫖断屌完成签到,获得积分10
9秒前
溯桀发布了新的文献求助10
11秒前
CipherSage应助怕孤单的觅波采纳,获得20
13秒前
小骆发布了新的文献求助10
13秒前
mx完成签到,获得积分20
17秒前
wuyd90发布了新的文献求助10
17秒前
冰魂应助谷雨秋采纳,获得10
18秒前
冰魂应助谷雨秋采纳,获得50
18秒前
jenningseastera应助谷雨秋采纳,获得50
18秒前
丘比特应助谷雨秋采纳,获得10
18秒前
dawnfrf应助谷雨秋采纳,获得50
18秒前
魏伯安发布了新的文献求助10
19秒前
19秒前
arcremnant完成签到,获得积分10
19秒前
小骆完成签到,获得积分10
22秒前
科研小垃圾完成签到,获得积分10
22秒前
高大的友梅完成签到 ,获得积分10
23秒前
24秒前
peanut完成签到 ,获得积分10
25秒前
蒙蒙完成签到 ,获得积分10
26秒前
张启完成签到 ,获得积分10
27秒前
量子星尘发布了新的文献求助10
29秒前
韩凡发布了新的文献求助30
30秒前
lizzie发布了新的文献求助10
34秒前
35秒前
务实的篙完成签到,获得积分10
38秒前
bkagyin应助轩轩采纳,获得10
40秒前
我要circulation完成签到,获得积分10
41秒前
tongser发布了新的文献求助10
45秒前
艾斯完成签到 ,获得积分10
45秒前
Sandy完成签到,获得积分10
47秒前
李健春完成签到 ,获得积分10
50秒前
51秒前
充电宝应助溯桀采纳,获得10
53秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
Learning to Listen, Listening to Learn 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881354
求助须知:如何正确求助?哪些是违规求助? 3423741
关于积分的说明 10735897
捐赠科研通 3148676
什么是DOI,文献DOI怎么找? 1737344
邀请新用户注册赠送积分活动 838802
科研通“疑难数据库(出版商)”最低求助积分说明 784087