DER-GCN: Dialog and Event Relation-Aware Graph Convolutional Neural Network for Multimodal Dialog Emotion Recognition

计算机科学 对话框 人工智能 自然语言处理 卷积神经网络 关系(数据库) 图形 事件(粒子物理) 语音识别 对话系统 理论计算机科学 数据挖掘 物理 量子力学 万维网
作者
Wei Ai,Yuntao Shou,Tao Meng,Keqin Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (3): 4908-4921 被引量:5
标识
DOI:10.1109/tnnls.2024.3367940
摘要

With the continuous development of deep learning (DL), the task of multimodal dialog emotion recognition (MDER) has recently received extensive research attention, which is also an essential branch of DL. The MDER aims to identify the emotional information contained in different modalities, e.g., text, video, and audio, and in different dialog scenes. However, the existing research has focused on modeling contextual semantic information and dialog relations between speakers while ignoring the impact of event relations on emotion. To tackle the above issues, we propose a novel dialog and event relation-aware graph convolutional neural network (DER-GCN) for multimodal emotion recognition method. It models dialog relations between speakers and captures latent event relations information. Specifically, we construct a weighted multirelationship graph to simultaneously capture the dependencies between speakers and event relations in a dialog. Moreover, we also introduce a self-supervised masked graph autoencoder (SMGAE) to improve the fusion representation ability of features and structures. Next, we design a new multiple information Transformer (MIT) to capture the correlation between different relations, which can provide a better fuse of the multivariate information between relations. Finally, we propose a loss optimization strategy based on contrastive learning to enhance the representation learning ability of minority class features. We conduct extensive experiments on the benchmark datasets, Interactive Emotional Dyadic Motion Capture (IEMOCAP) and Multimodal EmotionLines Dataset (MELD), which verify the effectiveness of the DER-GCN model. The results demonstrate that our model significantly improves both the average accuracy and the F1 value of emotion recognition. Our code is publicly available at https://github.com/yuntaoshou/DER-GCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助DouBo采纳,获得10
刚刚
1秒前
英姑应助YaoHui采纳,获得10
1秒前
zho发布了新的文献求助10
1秒前
zxr发布了新的文献求助10
3秒前
汉堡包应助与山采纳,获得10
5秒前
Wang发布了新的文献求助10
5秒前
6秒前
8秒前
10秒前
楚舜华完成签到,获得积分10
11秒前
11秒前
姜夔完成签到,获得积分10
12秒前
12秒前
tkurds发布了新的文献求助10
13秒前
害羞的山晴完成签到,获得积分10
13秒前
orixero应助算了飞采纳,获得30
14秒前
14秒前
华仔应助言言采纳,获得10
15秒前
15秒前
16秒前
zfh1341发布了新的文献求助10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
17秒前
DouBo发布了新的文献求助10
17秒前
17秒前
在水一方应助Petrichor采纳,获得10
20秒前
与山发布了新的文献求助10
21秒前
虚幻花卷发布了新的文献求助10
21秒前
领导范儿应助eyou采纳,获得10
21秒前
ccc完成签到 ,获得积分10
22秒前
lizhiqian2024发布了新的文献求助30
22秒前
22秒前
潇洒的平松完成签到,获得积分10
23秒前
24秒前
深情安青应助鲜艳的新梅采纳,获得10
24秒前
SYLH应助zxr采纳,获得10
24秒前
余味应助lijunlhc采纳,获得10
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784451
求助须知:如何正确求助?哪些是违规求助? 3329582
关于积分的说明 10242685
捐赠科研通 3044992
什么是DOI,文献DOI怎么找? 1671561
邀请新用户注册赠送积分活动 800396
科研通“疑难数据库(出版商)”最低求助积分说明 759391