催化作用
材料科学
氧化物
异质结
密度泛函理论
光热治疗
纳米颗粒
晶体结构
拉伤
金属
光电流
结晶学
化学工程
纳米技术
化学
光电子学
计算化学
内科学
工程类
医学
生物化学
冶金
作者
Qinghao Li,Qiankai Zhang,Chao Zeng,Kewei Xing,Jiaxi Niu,Haiyang Wang,Zixuan Xue,Bing Xiao,Kai Wu,Jun Zhou
出处
期刊:Small
[Wiley]
日期:2025-02-05
标识
DOI:10.1002/smll.202409441
摘要
Abstract The lattice strain influences crystal orientation, facets exposed to external light, and atom rearrangement strongly to affect catalytic activity. However, how to rationally design a metal‐oxide heterojunction catalyst with featuring lattice strain is a great challenge. Herein, a facile method is adopted to induce lattice strain upon in situ exsolution of Ni nanoparticles from Ba 0.9 Ti 0.9 Ni 0.1 O 3‐δ (BTNO) perovskite oxide, hereby enhancing the photothermal reduction of CO 2 . Lattice strain and Ni‐exsolution dual regulation ensure that the Ni‐anchored BTNO catalyst displays superb photothermal reduction activity of CO 2 . It shows a CO yield of 40.50 mmol g cat −1 h −1 and a CH 4 yield of 19.62 mmol g cat −1 h −1 , which are 14 and 73 times higher than those of BaTiO 3 . In addition, in situ DRIFTS and density functional theory (DFT) calculations reveal the CO 2 reduction pathways and strain modulates the interfacial band structure and enhances the transfer of photogenerated charge. Consequently, this study provides a new approach for achieving highly efficient photothermal catalytic reduction of CO 2 through strain engineering.
科研通智能强力驱动
Strongly Powered by AbleSci AI