Unraveling the Effects of Strain-Induced Defect Engineering on the Visible-Light-Driven Photodynamic Performance of Zn2SnO4 Nanoparticles Modified by Larger Barium Cations

光催化 材料科学 激进的 纳米颗粒 光化学 可见光谱 过氧化氢 纳米技术 化学工程 化学 光电子学 催化作用 有机化学 冶金 工程类
作者
Alaa Kamo,Özlem Ateş Sönmezoğlu,Savaş Sönmezoğlu
出处
期刊:ACS applied bio materials [American Chemical Society]
被引量:2
标识
DOI:10.1021/acsabm.4c01447
摘要

Waterborne infections caused by pathogenic microorganisms represent serious health risks for humans. Ternary zinc–tin oxide nanoparticles have great potential as a cost-effective, environmentally friendly, and efficient candidate for waterborne infections; however, their photocatalytic and antibacterial effects are quite limited due to insufficient visible light absorption and rapid electron–hole recombination. Herein, barium-doped zinc stannate (Ba@ZTO) nanoparticles were synthesized by the hydrothermal method and used for the first time not only as antibacterial agents to prevent the spread of the harmful bacteria S. aureus and E. coli but also as photocatalysts to degrade the organic pollutant rhodamine B. Unexpectedly, Ba2+ ions exhibited compressive stress behavior instead of the predicted tensile stress when inserted into the ZTO crystal lattice, playing an active role in increasing oxygen vacancies within the crystal lattice and in the formation of hydroxyl radicals in the bulk solution and hydrogen peroxide (H2O2) radicals, significantly improving the photocatalytic and antibacterial properties. Strain-induced defects created by the insertion of larger barium ions into the ZTO lattice promote the increase of shallow traps for boosting photocatalytic/disinfection properties while suppressing deep-level traps that encourage nonradiative recombination. In essence, defect and strain engineering opens a promising route to achieve high disinfection efficiency by inducing larger cation ions under visible light in oxide-based materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光发布了新的文献求助10
刚刚
烟花应助自由的念烟采纳,获得10
刚刚
1秒前
慕青应助葡萄冰采纳,获得10
1秒前
1秒前
CipherSage应助xixi采纳,获得10
1秒前
小蘑菇应助吴昊阳采纳,获得10
2秒前
十三完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
优秀紫萱发布了新的文献求助10
3秒前
朱朱完成签到,获得积分10
4秒前
dmxywzw6发布了新的文献求助10
4秒前
自由灵安发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
媛媛完成签到,获得积分10
5秒前
小熊会努力的完成签到,获得积分10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
狂野的小蘑菇完成签到 ,获得积分10
5秒前
宝贝发布了新的文献求助10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
6秒前
龚成霖发布了新的文献求助10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
7秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Essentials of consensual qualitative research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3915144
求助须知:如何正确求助?哪些是违规求助? 3460570
关于积分的说明 10912304
捐赠科研通 3187503
什么是DOI,文献DOI怎么找? 1761895
邀请新用户注册赠送积分活动 852420
科研通“疑难数据库(出版商)”最低求助积分说明 793370