Fusing Micro- and Macro-Scale Information to Predict Anticancer Synergistic Drug Combinations

计算机科学 比例(比率) 药品 数据挖掘 情报检索 医学 药理学 物理 量子力学 程序设计语言
作者
Xiaowen Wang,Hongming Zhu,Qi Liu,Qin Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (3): 2297-2309
标识
DOI:10.1109/jbhi.2024.3500789
摘要

Drug combination therapy is highly regarded in cancer treatment. Computational methods offer a time- and cost-effective opportunity to explore the vast combination space. Although deep learning-based prediction methods lead the field, their generalization ability remains unsatisfactory. Few previous studies have the ability to finely characterize drugs and cell lines at both the micro-scale and macro-scale. Furthermore, the interaction of cross-scale information is often overlooked. These two points limit models' ability of predicting the synergism of drug combinations in cell lines. To address the issues, we propose a novel anticancer synergistic drug combination prediction method termed MMFSynergy in this article. The construction of MMFSynergy involves three phases. First, MMFSynergy pretrains two micro encoders and a macro graph encoder, which can capture micro- or macro-scale information from large volumes of unlabeled data and generate generic features for drugs and proteins. Second, it represents drugs and proteins by fusing cross-scale information through a self-supervised task. Finally, it employs a Transformer Encoder-based model to predict synergy scores, taking representations of drugs in the combinations and the associated proteins of cell lines as input. We compared our method with eight advanced methods across three typical scenarios based on two public datasets. The results consistently demonstrated that the proposed method's generalization ability outperforms six advanced methods'. We also conducted experiments including but not limited to ablation study and case study to further exhibit the effectiveness of MMFSynergy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无花果应助认真盼曼采纳,获得10
2秒前
Bazinga发布了新的文献求助10
2秒前
宋佳完成签到,获得积分10
8秒前
爱吃大米发布了新的文献求助10
9秒前
9秒前
12发布了新的文献求助10
10秒前
11秒前
zzzz完成签到 ,获得积分10
13秒前
谦让寒云完成签到 ,获得积分10
14秒前
14秒前
16秒前
Hyperme完成签到,获得积分10
16秒前
爱吃大米完成签到,获得积分10
18秒前
酷波er应助年轻思山采纳,获得10
21秒前
tx完成签到,获得积分10
22秒前
22秒前
英姑应助琳儿真的很瘦了采纳,获得10
23秒前
tx发布了新的文献求助10
25秒前
小小H发布了新的文献求助10
26秒前
小肉包发布了新的文献求助10
27秒前
达不溜完成签到 ,获得积分10
27秒前
John完成签到 ,获得积分10
29秒前
30秒前
34秒前
35秒前
好运大王完成签到,获得积分10
35秒前
单纯芹菜完成签到 ,获得积分10
35秒前
昏睡的蟠桃应助GaoZz采纳,获得50
36秒前
科研通AI5应助神华采纳,获得10
36秒前
飞快的雅青完成签到 ,获得积分10
36秒前
不懂白完成签到 ,获得积分10
40秒前
LMNg6n发布了新的文献求助300
41秒前
45秒前
46秒前
46秒前
烟花应助科研通管家采纳,获得10
47秒前
科研通AI2S应助完美星落采纳,获得10
47秒前
共享精神应助科研通管家采纳,获得30
47秒前
48秒前
高分求助中
Calogero—Moser—Sutherland Systems 666
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800731
求助须知:如何正确求助?哪些是违规求助? 3346205
关于积分的说明 10328539
捐赠科研通 3062682
什么是DOI,文献DOI怎么找? 1681143
邀请新用户注册赠送积分活动 807369
科研通“疑难数据库(出版商)”最低求助积分说明 763646