HAIPipe: Combining Human-generated and Machine-generated Pipelines for Data Preparation

作者
Sibei Chen,Nan Tang,Ju Fan,Xiaolang Yan,Chengliang Chai,Guoliang Li,Xiaoyong Du
标识
DOI:10.1145/3588945
摘要

Data preparation is crucial in achieving optimized results for machine learning (ML). However, having a good data preparation pipeline is highly non-trivial for ML practitioners, which is not only domain-specific, but also dataset-specific. There are two common practices. Human-generated pipelines (HI-pipelines) typically use a wide range of any operations or libraries but are highly experience- and heuristic-based. In contrast, machine-generated pipelines (AI-pipelines), a.k.a. AutoML, often adopt a predefined set of sophisticated operations and are search-based and optimized. These two common practices are mutually complementary. In this paper, we study a new problem that, given an HI-pipeline and an AI-pipeline for the same ML task, can we combine them to get a new pipeline (HAI-pipeline) that is better than the provided HI-pipeline and AI-pipeline? We propose HAIPipe, a framework to address the problem, which adopts an enumeration-sampling strategy to carefully select the best performing combined pipeline. We also introduce a reinforcement learning (RL) based approach to search an optimized AI-pipeline. Extensive experiments using 1400+ real-world HI-pipelines (Jupyter notebooks from Kaggle) verify that HAIPipe can significantly outperform the approaches using either HI-pipelines or AI-pipelines alone.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司空豁应助小申采纳,获得10
1秒前
yiersan完成签到,获得积分10
2秒前
4秒前
Su发布了新的文献求助10
4秒前
潜放完成签到,获得积分10
4秒前
6秒前
顾矜应助xiao采纳,获得10
8秒前
小翼发布了新的文献求助10
9秒前
9秒前
研友_Z60ObL完成签到,获得积分10
12秒前
刘一三完成签到 ,获得积分10
12秒前
12秒前
静曼发布了新的文献求助30
12秒前
浅香千雪发布了新的文献求助10
16秒前
FashionBoy应助a1313采纳,获得10
17秒前
恋恋青葡萄完成签到,获得积分10
17秒前
18秒前
若雨凌风应助felix采纳,获得150
19秒前
小翼完成签到,获得积分10
21秒前
多次拒绝SCI约稿的莉莉完成签到,获得积分10
21秒前
桃子e发布了新的文献求助10
21秒前
22秒前
devil完成签到,获得积分10
22秒前
24秒前
HGalong发布了新的文献求助10
25秒前
圈圈发布了新的文献求助10
26秒前
27秒前
27秒前
眯眯眼的代容完成签到,获得积分10
28秒前
梅惜梦应助静曼采纳,获得10
29秒前
搞怪靖发布了新的文献求助10
29秒前
Alice关注了科研通微信公众号
29秒前
宋宋完成签到 ,获得积分10
29秒前
30秒前
浅香千雪发布了新的文献求助10
30秒前
31秒前
maxthon完成签到,获得积分10
31秒前
31秒前
柯一一应助科研通管家采纳,获得10
33秒前
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3921451
求助须知:如何正确求助?哪些是违规求助? 3466268
关于积分的说明 10941881
捐赠科研通 3194840
什么是DOI,文献DOI怎么找? 1765352
邀请新用户注册赠送积分活动 855495
科研通“疑难数据库(出版商)”最低求助积分说明 794854