HAIPipe: Combining Human-generated and Machine-generated Pipelines for Data Preparation

作者
Sibei Chen,Nan Tang,Ju Fan,Xiaolang Yan,Chengliang Chai,Guoliang Li,Xiaoyong Du
标识
DOI:10.1145/3588945
摘要

Data preparation is crucial in achieving optimized results for machine learning (ML). However, having a good data preparation pipeline is highly non-trivial for ML practitioners, which is not only domain-specific, but also dataset-specific. There are two common practices. Human-generated pipelines (HI-pipelines) typically use a wide range of any operations or libraries but are highly experience- and heuristic-based. In contrast, machine-generated pipelines (AI-pipelines), a.k.a. AutoML, often adopt a predefined set of sophisticated operations and are search-based and optimized. These two common practices are mutually complementary. In this paper, we study a new problem that, given an HI-pipeline and an AI-pipeline for the same ML task, can we combine them to get a new pipeline (HAI-pipeline) that is better than the provided HI-pipeline and AI-pipeline? We propose HAIPipe, a framework to address the problem, which adopts an enumeration-sampling strategy to carefully select the best performing combined pipeline. We also introduce a reinforcement learning (RL) based approach to search an optimized AI-pipeline. Extensive experiments using 1400+ real-world HI-pipelines (Jupyter notebooks from Kaggle) verify that HAIPipe can significantly outperform the approaches using either HI-pipelines or AI-pipelines alone.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
wxy发布了新的文献求助10
1秒前
科研通AI6应助kndfsfmf采纳,获得10
2秒前
喜悦的半青关注了科研通微信公众号
2秒前
2秒前
3秒前
俏皮的书竹完成签到 ,获得积分10
4秒前
随心完成签到,获得积分20
5秒前
顾矜应助李杰采纳,获得10
6秒前
今后应助hha采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
Au完成签到,获得积分10
7秒前
ding应助科研通管家采纳,获得10
7秒前
有米饭没完成签到 ,获得积分10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得20
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
小二郎应助幸福大白采纳,获得10
7秒前
馆长应助科研通管家采纳,获得30
8秒前
大模型应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
8秒前
Metrix发布了新的文献求助10
12秒前
俏皮的书竹关注了科研通微信公众号
12秒前
王木木发布了新的文献求助30
12秒前
13秒前
13秒前
13秒前
14秒前
FashionBoy应助yzyue采纳,获得10
15秒前
李爱国应助现代的中道采纳,获得10
16秒前
Jack完成签到,获得积分10
16秒前
金鑫发布了新的文献求助10
17秒前
彭于晏应助311采纳,获得10
17秒前
yulia发布了新的文献求助10
17秒前
18秒前
搜集达人应助李理采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4693396
求助须知:如何正确求助?哪些是违规求助? 4064193
关于积分的说明 12566454
捐赠科研通 3762476
什么是DOI,文献DOI怎么找? 2077998
邀请新用户注册赠送积分活动 1106357
科研通“疑难数据库(出版商)”最低求助积分说明 984740