亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dual-Space Normalizing Flow for Unsupervised Video Anomaly Detection

异常检测 计算机科学 人工智能 模式识别(心理学) 计算机视觉 图像处理 图像(数学)
作者
Jiaxu Leng,Yumeng Zhang,Mingpi Tan,Changjiang Kuang,Zhanjie Wu,Ji Gan,Xinbo Gao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 6432-6445
标识
DOI:10.1109/tip.2025.3614006
摘要

Conventional reconstruction-based video anomaly detection (VAD) methods implicitly model normality in latent spaces, which is limited by the generalization ability of latent features. Normalizing Flow (NF)-based methods have been introduced to address this issue, as they explicitly model the distribution of input data and achieve significant performance in VAD. However, existing NF-based methods are confined to Euclidean space, limiting their ability to model action hierarchies. While effective at capturing local joint dynamics and short-term temporal variations, they fail to encode kinematic dependencies and long-term pose evolution, ultimately struggling to discern ambiguous anomalies that deviate minimally from normal motion. In contrast, hyperbolic representation learning, with its ability to model hierarchical and complex relationships among actions, offers a promising solution to enhance the discriminative power between similar skeletal actions. Motivated by this, we propose a novel Dual-Space Normalizing Flow (DSNF) method. Specifically, we design a Dual-Space Parallel Graph Convolutional Network (DSPGCN) that synergistically integrates the strengths of both Euclidean and hyperbolic geometries to simultaneously capture local detail features of poses and intrinsic hierarchical relationships of actions. To enhance the model's focus on discriminative features, we design an Adaptive Weighted Approximation Mass (AWAM) loss that dynamically adjusts weights to impose stronger constraints on regions with low discriminability in the dual space, encouraging the model to focus more on key discriminative features in hyperbolic space that reflect complex relationships between actions. Extensive experiments on public datasets demonstrate the effectiveness and robustness of our method in various VAD scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
20秒前
苗苗完成签到 ,获得积分10
49秒前
浮游应助科研通管家采纳,获得10
59秒前
浮游应助科研通管家采纳,获得10
59秒前
浮游应助科研通管家采纳,获得10
59秒前
Owen应助科研通管家采纳,获得10
59秒前
浮游应助科研通管家采纳,获得10
59秒前
浮游应助科研通管家采纳,获得10
59秒前
充电宝应助科研通管家采纳,获得10
59秒前
浮游应助科研通管家采纳,获得10
59秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
浪漫反派发布了新的文献求助10
1分钟前
未知数完成签到,获得积分10
1分钟前
浪漫反派完成签到,获得积分20
1分钟前
1分钟前
科研通AI6应助虚拟的铃铛采纳,获得10
1分钟前
司空御宇完成签到 ,获得积分10
2分钟前
2分钟前
Cindy发布了新的文献求助10
2分钟前
2分钟前
雨天有伞发布了新的文献求助10
2分钟前
Cindy完成签到,获得积分20
2分钟前
酷酷海豚完成签到,获得积分10
2分钟前
雨天有伞完成签到,获得积分10
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
3分钟前
会吐泡泡的小新完成签到 ,获得积分10
3分钟前
眯眯眼的乐曲完成签到,获得积分10
3分钟前
power完成签到,获得积分10
3分钟前
3分钟前
田様应助Nora采纳,获得10
4分钟前
sealking发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463358
求助须知:如何正确求助?哪些是违规求助? 4568082
关于积分的说明 14312444
捐赠科研通 4494047
什么是DOI,文献DOI怎么找? 2462071
邀请新用户注册赠送积分活动 1451025
关于科研通互助平台的介绍 1426281