Calculations of fractional derivative option pricing models based on neural network

分数阶微积分 共形矩阵 数学 核(代数) 人工神经网络 应用数学 功能(生物学) 衍生工具(金融) 数学优化 计算机科学 财务 人工智能 物理 量子力学 组合数学 进化生物学 经济 生物
作者
Lina Song,Yu Wang,Yousheng Tan,Ke Duan
出处
期刊:Journal of Computational and Applied Mathematics [Elsevier BV]
卷期号:437: 115462-115462 被引量:9
标识
DOI:10.1016/j.cam.2023.115462
摘要

The work adopts the neural network algorithm to derive optimized series solutions of fractional option pricing equations. The studied models include Caputo time-fractional equation and space-time fractional differential equations. The solutions of fractional derivative models are made up of the time variable and the kernel functions of RBF neural network. According to the characteristics of the models, the information function, the test solution, the output function and the loss function are established in turn. And then the optimal parameters of the solution structures of fractional derivative models are calculated by the designed neural network in conjunction with Chinese market data. For Caputo time-fractional model, the pricing results under different kernel functions, with or without cluster analysis, are compared through numerical analysis and illustration. The results of cluster analysis are better than those without cluster analysis. For space-time fractional models, comparative studies between the pricing results under Caputo and conformable fractional derivatives and those from conformable fractional derivative are made and analyzed by the market data. The numerical simulations indicate that the space-time fractional derivative models have strong predictive abilities. Application analyses show that it is feasible and operable for fractional calculus tool and neural network algorithm to jointly act on the pricing problems of financial derivatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一苇以航应助虚心的鸽子采纳,获得10
1秒前
creepppp发布了新的文献求助10
1秒前
科研通AI5应助S.采纳,获得10
1秒前
科研通AI5应助饿哭了塞采纳,获得10
1秒前
HF完成签到,获得积分10
2秒前
莓莓gogogo发布了新的文献求助10
2秒前
qiao发布了新的文献求助10
2秒前
晏晏发布了新的文献求助10
2秒前
Lionnn发布了新的文献求助10
3秒前
3秒前
ding应助Fu采纳,获得10
4秒前
4秒前
敏儿发布了新的文献求助10
4秒前
4秒前
张海桐发布了新的文献求助10
5秒前
accpeted应助酷酷含桃采纳,获得10
5秒前
hebilie发布了新的文献求助10
6秒前
6秒前
7秒前
CGBY完成签到 ,获得积分10
7秒前
8秒前
kangjie123应助zcydbttj2011采纳,获得10
8秒前
orixero应助creepppp采纳,获得10
8秒前
9秒前
xinlei2023发布了新的文献求助10
9秒前
10秒前
10秒前
言言发布了新的文献求助10
10秒前
joasuka完成签到,获得积分20
11秒前
田様应助科研通管家采纳,获得10
12秒前
jin发布了新的文献求助10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
12秒前
完美世界应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805912
求助须知:如何正确求助?哪些是违规求助? 3350817
关于积分的说明 10351267
捐赠科研通 3066685
什么是DOI,文献DOI怎么找? 1684088
邀请新用户注册赠送积分活动 809298
科研通“疑难数据库(出版商)”最低求助积分说明 765432