控制理论(社会学)
巡航控制
鲁棒控制
计算机科学
估计员
上下界
控制器(灌溉)
二次方程
观察员(物理)
自适应控制
车辆动力学
理论(学习稳定性)
控制系统
数学
控制(管理)
工程类
数学分析
农学
统计
物理
几何学
量子力学
人工智能
机器学习
汽车工程
电气工程
生物
作者
Ersin Daş,Richard M. Murray
标识
DOI:10.1109/cdc51059.2022.9993032
摘要
In a complex real-time operating environment, external disturbances and uncertainties adversely affect the safety, stability, and performance of dynamical systems. This paper presents a robust stabilizing safety-critical controller synthesis framework with control Lyapunov functions (CLFs) and control barrier functions (CBFs) in the presence of disturbance. A high-gain input observer method is adapted to estimate the time-varying unmodelled dynamics of the CBF with an error bound using the first-order time derivative of the CBF. This approach leads to an easily tunable low-order disturbance estimator structure with a design parameter as it utilizes only the CBF constraint. The estimated unknown input and associated error bound are used to ensure robust safety by formulating a CLF-CBF quadratic program. The proposed method is applicable to both relative degree one and higher relative degree CBF constraints. The efficacy of the proposed approach is demonstrated using a numerical simulations of an adaptive cruise control system and a Segway platform with an external disturbance.
科研通智能强力驱动
Strongly Powered by AbleSci AI