Hierarchical hypergraph learning in association-weighted heterogeneous network for miRNA-disease association identification

联想(心理学) 鉴定(生物学) 超图 关联规则学习 小RNA 疾病 计算机科学 计算生物学 人工智能 医学 遗传学 生物 数学 心理学 基因 内科学 组合数学 心理治疗师 植物
作者
Ning Qiao,Yaomiao Zhao,Jun Gao,Chen Chen,Minghao Yin
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tcbb.2024.3485788
摘要

MicroRNAs (miRNAs) play a significant role in cell differentiation, biological development as well as the occurrence and growth of diseases. Although many computational methods contribute to predicting the association between miRNAs and diseases, they do not fully explore the attribute information contained in associated edges between miRNAs and diseases. In this study, we propose a new method, Hierarchical Hypergraph learning in Association-Weighted heterogeneous network for MiRNA-Disease association identification (HHAWMD). HHAWMD first adaptively fuses multi-view similarities based on channel attention and distinguishes the relevance of different associated relationships according to changes in expression levels of disease-related miRNAs, miRNA similarity information, and disease similarity information. Then, HHAWMD assigns edge weights and attribute features according to the association level to construct an association-weighted heterogeneous graph. Next, HHAWMD extracts the subgraph of the miRNA-disease node pair from the heterogeneous graph and builds the hyperedge (a kind of virtual edge) between the node pair to generate the hypergraph. Finally, HHAWMD proposes a hierarchical hypergraph learning approach, including node-aware attention and hyperedge-aware attention, which aggregates the abundant semantic information contained in deep and shallow neighborhoods to the hyperedge in the hypergraph. Our experiment results suggest that HHAWMD has better performance and can be used as a powerful tool for miRNA-disease association identification. The source code and data of HHAWMD are available at https://github.com/ningq669/HHAWMD/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葵花籽完成签到,获得积分10
2秒前
Jasper应助tian采纳,获得10
2秒前
王王完成签到,获得积分10
2秒前
3秒前
4秒前
胖头鱼发布了新的文献求助10
5秒前
5秒前
务实幻露完成签到,获得积分10
6秒前
Xiaoxiao应助hansiball采纳,获得10
6秒前
7秒前
半柚发布了新的文献求助10
8秒前
阿斯顿完成签到,获得积分10
9秒前
9秒前
温暖妙彤完成签到,获得积分10
9秒前
半山发布了新的文献求助10
9秒前
零零完成签到,获得积分10
9秒前
10秒前
bo完成签到 ,获得积分10
10秒前
小二郎应助胖头鱼采纳,获得10
11秒前
loin完成签到,获得积分10
13秒前
14秒前
Akim应助青橘短衫采纳,获得10
16秒前
Giao发布了新的文献求助10
17秒前
科研通AI5应助kmmu0611采纳,获得10
17秒前
18秒前
Peter_Zhu完成签到,获得积分10
18秒前
wsq完成签到,获得积分10
18秒前
Jemezs发布了新的文献求助10
19秒前
科研通AI5应助我我我采纳,获得10
20秒前
淡然冬灵应助李火火采纳,获得30
23秒前
DADA发布了新的文献求助20
25秒前
25秒前
26秒前
27秒前
真源莫方完成签到,获得积分10
28秒前
28秒前
Jehuw完成签到,获得积分10
28秒前
wangnankai发布了新的文献求助10
30秒前
30秒前
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323865
关于积分的说明 10216275
捐赠科研通 3039094
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366