Cascading Residual Graph Convolutional Network for Multi-Behavior Recommendation

计算机科学 利用 图形 保险丝(电气) 残余物 推荐系统 人工智能 机器学习 理论计算机科学 算法 计算机安全 电气工程 工程类
作者
Mingshi Yan,Zhiyong Cheng,Chen Gao,Jing Sun,Fan Liu,Fuming Sun,Haojie Li
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (1): 1-26 被引量:30
标识
DOI:10.1145/3587693
摘要

Multi-behavior recommendation exploits multiple types of user-item interactions, such as view and cart , to learn user preferences and has demonstrated to be an effective solution to alleviate the data sparsity problem faced by the traditional models that often utilize only one type of interaction for recommendation. In real scenarios, users often take a sequence of actions to interact with an item, in order to get more information about the item and thus accurately evaluate whether an item fits their personal preferences. Those interaction behaviors often obey a certain order, and more importantly, different behaviors reveal different information or aspects of user preferences towards the target item. Most existing multi-behavior recommendation methods take the strategy to first extract information from different behaviors separately and then fuse them for final prediction. However, they have not exploited the connections between different behaviors to learn user preferences. Besides, they often introduce complex model structures and more parameters to model multiple behaviors, largely increasing the space and time complexity. In this work, we propose a lightweight multi-behavior recommendation model named Cascading Residual Graph Convolutional Network ( CRGCN for short) for multi-behavior recommendation, which can explicitly exploit the connections between different behaviors into the embedding learning process without introducing any additional parameters (with comparison to the single-behavior based recommendation model). In particular, we design a cascading residual graph convolutional network (GCN) structure, which enables our model to learn user preferences by continuously refining the embeddings across different types of behaviors. The multi-task learning method is adopted to jointly optimize our model based on different behaviors. Extensive experimental results on three real-world benchmark datasets show that CRGCN can substantially outperform the state-of-the-art methods, achieving 24.76%, 27.28%, and 25.10% relative gains on average in terms of HR@K (K = {10,20,50,80}) over the best baseline across the three datasets. Further studies also analyze the effects of leveraging multi-behaviors in different numbers and orders on the final performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
x1981完成签到,获得积分10
1秒前
桑sang完成签到,获得积分10
1秒前
欣喜书桃发布了新的文献求助10
1秒前
1秒前
1秒前
WQ发布了新的文献求助20
2秒前
白玫瑰完成签到,获得积分10
2秒前
古果完成签到,获得积分10
2秒前
高源伯完成签到 ,获得积分10
2秒前
joy发布了新的文献求助10
2秒前
ahuang发布了新的文献求助10
2秒前
由由发布了新的文献求助10
2秒前
3秒前
迷你的隶完成签到,获得积分10
3秒前
科研小牛完成签到 ,获得积分10
3秒前
桐桐应助苏雅霏采纳,获得10
3秒前
3秒前
3秒前
沐沐完成签到,获得积分10
3秒前
kidult完成签到,获得积分10
4秒前
完美世界应助JYY采纳,获得10
5秒前
李昊泽发布了新的文献求助10
5秒前
Aoch完成签到,获得积分10
5秒前
三毛变相发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
carcar发布了新的文献求助10
7秒前
7秒前
风趣谷秋完成签到,获得积分20
7秒前
7秒前
7秒前
7秒前
慢慢发布了新的文献求助10
7秒前
8秒前
8秒前
kejun完成签到 ,获得积分10
8秒前
单复天发布了新的文献求助10
8秒前
kidult发布了新的文献求助10
9秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816616
求助须知:如何正确求助?哪些是违规求助? 3359993
关于积分的说明 10406263
捐赠科研通 3078092
什么是DOI,文献DOI怎么找? 1690505
邀请新用户注册赠送积分活动 813815
科研通“疑难数据库(出版商)”最低求助积分说明 767871