Smart Organogels with Antiswelling, Strong Adhesion, and Freeze-Tolerance for Multi-Environmental Wearable Bioelectronic Devices

材料科学 纳米技术 粘附 聚合物 碳纳米管 可穿戴技术 可穿戴计算机 计算机科学 复合材料 嵌入式系统
作者
Zilong Zhu,Dongdong Lu,Mingning Zhu,Peng Zhang,X.‐D. Xiang
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:36 (9): 4456-4467
标识
DOI:10.1021/acs.chemmater.4c00064
摘要

Gel-based wearable bioelectronic devices have garnered increasing attention due to their unique properties. However, developing multiple environmentally tolerant (resistant to freezing, drying, and various solvents) conductive gels presents a formidable challenge. Herein, we designed and developed a smart organogel exhibiting high stretchability (up to 550% strain and 19.3 kPa modulus), adhesion (24.8 kPa on pigskin), and resistance to freezing, drying, and various solvents. This achievement is attributed to the synergistic effects arising from the interplay between hydrophobic and hydrophilic polymer segments, the multiple bond interactions within a composite network, and the robust adhesion provided by catechol functional groups in binary solvent dispersion. Furthermore, after introducing hydroxyl-functionalized carbon nanotubes (CNTs) into the network, the organogels demonstrate high conductivity with satisfactory sensitivity (GF = 3.68), wide strain range (0.5–450%), and prominent signal stability. Meanwhile, benefiting from the nonswelling and antifreezing attributes, the obtained conductive organogel proves its versatility as an all-weather sensor. It can achieve accurate and reliable strain sensing in a wide temperature range of −20 to 50 °C and exhibits a high-precision Morse code to transmit information underwater. Moreover, it could also serve as soft bionic electrodes to integrate into a wearable wireless device for detecting human physiological signals underwater. This study provides an effective and versatile design strategy for developing future advanced gel-based sensors and soft bioelectronic devices with robust tolerance to diverse environmental conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xiu发布了新的文献求助10
1秒前
悦耳代真发布了新的文献求助10
2秒前
4秒前
4秒前
蜡笔完成签到,获得积分10
4秒前
搜集达人应助海小豆采纳,获得10
6秒前
爆米花应助ChaiHaobo采纳,获得10
7秒前
JamesPei应助彩云追月采纳,获得10
8秒前
zhengly23完成签到,获得积分10
9秒前
Percy完成签到,获得积分10
9秒前
yeape发布了新的文献求助10
9秒前
11秒前
hx发布了新的文献求助10
11秒前
11秒前
北世发布了新的文献求助10
12秒前
Joshua发布了新的文献求助10
13秒前
guohuan完成签到,获得积分10
15秒前
不加糖发布了新的文献求助10
17秒前
李爱国应助莫道雪落奈何采纳,获得10
18秒前
爱大美完成签到,获得积分10
18秒前
科研通AI5应助lxqd1采纳,获得10
18秒前
huifang完成签到,获得积分10
19秒前
wangw061应助lyp7028采纳,获得10
19秒前
千幻完成签到,获得积分10
20秒前
田様应助yeape采纳,获得10
20秒前
20秒前
昌升完成签到,获得积分20
21秒前
悦耳代真完成签到,获得积分20
23秒前
rebubu完成签到 ,获得积分10
24秒前
24秒前
24秒前
26秒前
77paocai完成签到,获得积分10
27秒前
28秒前
28秒前
嫩嫩发布了新的文献求助10
29秒前
TWO宝发布了新的文献求助10
29秒前
开心的曼岚完成签到,获得积分10
29秒前
科研通AI2S应助zjq采纳,获得10
29秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805407
求助须知:如何正确求助?哪些是违规求助? 3350368
关于积分的说明 10348817
捐赠科研通 3066317
什么是DOI,文献DOI怎么找? 1683676
邀请新用户注册赠送积分活动 809123
科研通“疑难数据库(出版商)”最低求助积分说明 765254