Fully automatic tracking of native knee kinematics from stereo-radiography with digitally reconstructed radiographs

计算机视觉 人工智能 射线照相术 运动学 计算机科学 成像体模 医学 核医学 放射科 物理 经典力学
作者
William S. Burton,Casey A. Myers,Margareta Stefanovic,Kevin B. Shelburne,Paul J. Rullkoetter
出处
期刊:Journal of Biomechanics [Elsevier BV]
卷期号:166: 112066-112066
标识
DOI:10.1016/j.jbiomech.2024.112066
摘要

Precise measurement of joint-level motion from stereo-radiography facilitates understanding of human movement. Conventional procedures for kinematic tracking require significant manual effort and are time intensive. The current work introduces a method for fully automatic tracking of native knee kinematics from stereo-radiography sequences. The framework consists of three computational steps. First, biplanar radiograph frames are annotated with segmentation maps and key points using a convolutional neural network. Next, initial bone pose estimates are acquired by solving a polynomial optimization problem constructed from annotated key points and anatomic landmarks from digitized models. A semidefinite relaxation is formulated to realize the global minimum of the non-convex problem. Pose estimates are then refined by registering computed tomography-based digitally reconstructed radiographs to masked radiographs. A novel rendering method is also introduced which enables generating digitally reconstructed radiographs from computed tomography scans with inconsistent slice widths. The automatic tracking framework was evaluated with stereo-radiography trials manually tracked with model-image registration, and with frames which capture a synthetic leg phantom. The tracking method produced pose estimates which were consistently similar to manually tracked values; and demonstrated pose errors below 1.0 degree or millimeter for all femur and tibia degrees of freedom in phantom trials. Results indicate the described framework may benefit orthopaedics and biomechanics applications through acceleration of kinematic tracking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
heiniu完成签到,获得积分10
2秒前
ning_qing完成签到 ,获得积分10
2秒前
liukang172完成签到,获得积分10
3秒前
李健应助贤惠的早晨采纳,获得10
5秒前
keplek完成签到 ,获得积分10
5秒前
6秒前
思源应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
雨水完成签到,获得积分10
7秒前
颿曦发布了新的文献求助10
7秒前
fbwg发布了新的文献求助10
9秒前
怕孤单的芷云完成签到,获得积分20
10秒前
10秒前
简单的易云完成签到,获得积分10
14秒前
世间安得双全法完成签到,获得积分0
14秒前
立军发布了新的文献求助10
15秒前
chanhow完成签到,获得积分10
16秒前
18秒前
NexusExplorer应助yangyj采纳,获得10
18秒前
chen完成签到 ,获得积分10
18秒前
夜捕白日梦完成签到,获得积分10
22秒前
22秒前
缥缈纲完成签到,获得积分10
23秒前
chanhow发布了新的文献求助10
23秒前
23秒前
haprier完成签到 ,获得积分10
24秒前
认真丹亦完成签到 ,获得积分10
24秒前
加一点荒谬完成签到,获得积分10
25秒前
背后昊焱发布了新的文献求助10
28秒前
短巷完成签到 ,获得积分10
28秒前
weijie完成签到,获得积分10
38秒前
科研通AI5应助立军采纳,获得10
40秒前
淡然冬灵发布了新的文献求助30
42秒前
Yang22完成签到,获得积分10
44秒前
kai chen完成签到 ,获得积分0
45秒前
孟__发布了新的文献求助10
45秒前
SciGPT应助光亮元枫采纳,获得10
50秒前
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10226967
捐赠科研通 3041589
什么是DOI,文献DOI怎么找? 1669510
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734