微观经济学
法律与经济学
劳动经济学
业务
经济
计算机科学
作者
Max Springer,MohammadTaghi Hajiaghayi,Hadi Yami
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence
[Association for the Advancement of Artificial Intelligence (AAAI)]
日期:2024-03-24
卷期号:38 (9): 9901-9908
被引量:2
标识
DOI:10.1609/aaai.v38i9.28851
摘要
We here address the problem of fairly allocating indivisible goods or chores to n agents with weights that define their entitlement to the set of indivisible resources. Stemming from well-studied fairness concepts such as envy-freeness up to one good (EF1) and envy-freeness up to any good (EFX) for agents with equal entitlements, we present, in this study, the first set of impossibility results alongside algorithmic guarantees for fairness among agents with unequal entitlements. Within this paper, we expand the concept of envy-freeness up to any good or chore to the weighted context (WEFX and XWEF respectively), demonstrating that these allocations are not guaranteed to exist for two or three agents. Despite these negative results, we develop a WEFX procedure for two agents with integer weights, and furthermore, we devise an approximate WEFX procedure for two agents with normalized weights. We further present a polynomial-time algorithm that guarantees a weighted envy-free allocation up to one chore (1WEF) for any number of agents with additive cost functions. Our work underscores the heightened complexity of the weighted fair division problem when compared to its unweighted counterpart.
科研通智能强力驱动
Strongly Powered by AbleSci AI