已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automated Detection and Grading of Extraprostatic Extension of Prostate Cancer at MRI via Cascaded Deep Learning and Random Forest Classification

随机森林 前列腺癌 分级(工程) 人工智能 癌症检测 计算机科学 深度学习 前列腺 扩展(谓词逻辑) 模式识别(心理学) 放射科 医学 医学物理学 癌症 内科学 工程类 土木工程 程序设计语言
作者
Benjamin Simon,Katie Merriman,Stephanie A. Harmon,Jesse Tetreault,Enis C. Yılmaz,Zoë Blake,Maria J. Merino,Julie Y. An,Jamie Marko,Yan Mee Law,Sandeep Gurram,Bradford J. Wood,Peter L. Choyke,Peter A. Pinto,Barış Türkbey
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (10): 4096-4106 被引量:8
标识
DOI:10.1016/j.acra.2024.04.011
摘要

Extraprostatic extension (EPE) is well established as a significant predictor of prostate cancer aggression and recurrence. Accurate EPE assessment prior to radical prostatectomy can impact surgical approach. We aimed to utilize a deep learning-based AI workflow for automated EPE grading from prostate T2W MRI, ADC map, and High B DWI.An expert genitourinary radiologist conducted prospective clinical assessments of MRI scans for 634 patients and assigned risk for EPE using a grading technique. The training set and held-out independent test set consisted of 507 patients and 127 patients, respectively. Existing deep-learning AI models for prostate organ and lesion segmentation were leveraged to extract area and distance features for random forest classification models. Model performance was evaluated using balanced accuracy, ROC AUCs for each EPE grade, as well as sensitivity, specificity, and accuracy compared to EPE on histopathology.A balanced accuracy score of .390 ± 0.078 was achieved using a lesion detection probability threshold of 0.45 and distance features. Using the test set, ROC AUCs for AI-assigned EPE grades 0-3 were 0.70, 0.65, 0.68, and 0.55 respectively. When using EPE≥ 1 as the threshold for positive EPE, the model achieved a sensitivity of 0.67, specificity of 0.73, and accuracy of 0.72 compared to radiologist sensitivity of 0.81, specificity of 0.62, and accuracy of 0.66 using histopathology as the ground truth.Our AI workflow for assigning imaging-based EPE grades achieves an accuracy for predicting histologic EPE approaching that of physicians. This automated workflow has the potential to enhance physician decision-making for assessing the risk of EPE in patients undergoing treatment for prostate cancer due to its consistency and automation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SAXA完成签到,获得积分10
刚刚
子木李完成签到 ,获得积分10
刚刚
lia完成签到,获得积分10
4秒前
5秒前
蓝蓝发布了新的文献求助20
7秒前
9秒前
13秒前
tyj完成签到,获得积分10
13秒前
14秒前
wansida完成签到,获得积分10
14秒前
15秒前
小赵同学完成签到,获得积分10
17秒前
18秒前
赘婿应助高大的战斗机采纳,获得10
19秒前
轩辕白易发布了新的文献求助10
20秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
小二郎应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
22秒前
大个应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
22秒前
23秒前
xwz626完成签到,获得积分10
24秒前
wing完成签到 ,获得积分10
27秒前
所所应助香蕉梨愁采纳,获得10
28秒前
大模型应助香蕉梨愁采纳,获得10
28秒前
共享精神应助香蕉梨愁采纳,获得10
28秒前
CipherSage应助香蕉梨愁采纳,获得10
28秒前
酷波er应助香蕉梨愁采纳,获得10
28秒前
乐乐应助香蕉梨愁采纳,获得10
28秒前
bkagyin应助香蕉梨愁采纳,获得10
28秒前
大模型应助香蕉梨愁采纳,获得10
28秒前
今后应助香蕉梨愁采纳,获得10
28秒前
奋斗的悦完成签到 ,获得积分10
29秒前
和谐的冬卉完成签到 ,获得积分10
30秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4117651
求助须知:如何正确求助?哪些是违规求助? 3656215
关于积分的说明 11576540
捐赠科研通 3358933
什么是DOI,文献DOI怎么找? 1845271
邀请新用户注册赠送积分活动 910714
科研通“疑难数据库(出版商)”最低求助积分说明 827069