Convolutional Neural Network Approach for South African Sign Language Recognition and Translation

计算机科学 卷积神经网络 翻译(生物学) 人工智能 手语 符号(数学) 自然语言处理 语音识别 语言学 数学 数学分析 生物化学 化学 哲学 信使核糖核酸 基因
作者
Tebatso Gorgina Moape,Absolom Muzambi,Bester Chimbo
标识
DOI:10.1109/ictas59620.2024.10507130
摘要

Sign language is a natural, visually oriented, and non-verbal communication channel for the deaf and dumb community. However, not everyone understands sign language, particularly, individuals outside of the deaf-dumb community. This challenge has been addressed through the development of automatic sign language recognition (SLR) systems. Various SLR applications have been developed for English, Indian, Korean, Turkish, Arabic, and other sign languages. However, few studies have been conducted on South African SLR due to the lack of publicly available sign language datasets. In addition, the existing South African SLR systems face challenges in being conducted efficiently as a result of special equipment such as wearable data gloves needed for hand gesture recognition and light illumination complexity background challenges. This paper applies deep learning-based convolutional neural networks (CNNs) for South African SLR and classification. In this work, the CNN model was trained on 12420 images of 26 static South African sign language alphabets and 4050 validation datasets using the Gaussian blurring combined with adaptive threshold pre-processing techniques. The proposed model is embedded with a Google Translate application program interface (API) that translates the signed output into various South African official languages to ensure that sign language can be understood in various languages beyond English. The obtained results and comparative analysis demonstrate the efficiency of the proposed model with a weighted average of 98% accuracy, precision, recall, and F1-score outperforming the existing models in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
嘉嘉完成签到 ,获得积分10
5秒前
studystudy完成签到,获得积分10
6秒前
LZH完成签到,获得积分10
7秒前
8秒前
吉以寒完成签到,获得积分10
9秒前
洪汉完成签到,获得积分0
10秒前
10秒前
LZH发布了新的文献求助10
10秒前
agrlook完成签到,获得积分10
10秒前
mczhu完成签到,获得积分10
16秒前
海事喜之郎关注了科研通微信公众号
16秒前
阳光的梦寒完成签到,获得积分10
17秒前
华仔应助jinzhen采纳,获得10
17秒前
LLQ完成签到,获得积分20
21秒前
乐乐应助GenX采纳,获得10
21秒前
感动书文完成签到,获得积分10
22秒前
24秒前
酷酷映冬完成签到 ,获得积分10
26秒前
27秒前
医生小白完成签到 ,获得积分10
28秒前
28秒前
jinzhen发布了新的文献求助10
29秒前
炙热尔阳完成签到 ,获得积分10
29秒前
32秒前
xxx7749发布了新的文献求助10
34秒前
jason完成签到,获得积分10
35秒前
40秒前
Asura完成签到,获得积分10
53秒前
药学小团子完成签到,获得积分10
55秒前
59秒前
jify完成签到,获得积分10
1分钟前
ORAzzz完成签到,获得积分10
1分钟前
科目三应助凌代萱采纳,获得10
1分钟前
拾光完成签到 ,获得积分10
1分钟前
小猛人发布了新的文献求助10
1分钟前
1分钟前
从容问薇完成签到,获得积分10
1分钟前
慕青应助小猛人采纳,获得10
1分钟前
佳佳佳完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781313
求助须知:如何正确求助?哪些是违规求助? 3326832
关于积分的说明 10228480
捐赠科研通 3041848
什么是DOI,文献DOI怎么找? 1669603
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751