Differentiation of Malignancy and Idiopathic Granulomatous Mastitis Presenting as Non-mass Lesions on MRI: Radiological, Clinical, Radiomics, and Clinical-Radiomics Models

无线电技术 医学 恶性肿瘤 肉芽肿性乳腺炎 放射性武器 放射科 磁共振成像 病理 乳腺炎
作者
Yasemin Kayadibi,Mehmet Sakıpcan Saracoglu,Seda Aladağ Kurt,Enes Deger,Fatma Nur Soylu Boy,Neşe Uçar,Gül Esen
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (9): 3511-3523 被引量:5
标识
DOI:10.1016/j.acra.2024.03.025
摘要

Rationale and Objectives

To investigate the effectiveness of machine learning-based clinical, radiomics, and combined models in differentiating idiopathic granulomatous mastitis (IGM) from malignancy, both presenting as non-mass enhancement (NME) lesions on magnetic resonance imaging (MRI), and to compare these models with radiological evaluation.

Material and methods

A total of 178 patients (69 IGM and 109 breast cancer patients) with NME on breast MRI evaluated between March 2018 and April 2022, were included in this two-center study. Age, skin changes, presence of fistula, and abscess were recorded from hospital records. Two experienced radiologists evaluated MRI images according to the breast imaging reporting and data system 2013 lexicon. Lesions were segmented independently on T2-weighted, apparent diffusion coefficient, and post-contrast-T1-weighted sequences. Data were split into training and external testing sets. Machine learning models were built using Light GBM (light gradient-boosting machine). Radiological, clinical, radiomics, and clinical-radiomics models were created and compared. Decision curve analysis was performed. Quality of reporting and that of methodology were evaluated using CLEAR and METRICS tools.

Results

IGM group was younger (p = 0.014). Abscesses (p < 0.001), fistulas (p < 0.001), and skin changes (p < 0.001) were significantly more common in the IGM group. No significant difference was detected in terms of lesion size (p = 0.213). In the evaluation of NME, the lowest performance belonged to the radiologists' evaluation (AUC for training, 0.740; for testing, 0.737), while the highest AUC was achieved by the model developed by combined clinical and radiomics features (AUC for training, 0.979; for testing, 0.942).

Conclusion

Our study has shown that the machine learning-based clinical-radiomics model might have the potential to accurately discriminate IGM and malignant lesions in evaluating NME areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助madmax采纳,获得10
刚刚
眼睛大樱桃完成签到 ,获得积分10
刚刚
刚刚
wuniuniu完成签到,获得积分20
刚刚
小恐龙飞飞完成签到 ,获得积分10
2秒前
lily336699发布了新的文献求助10
2秒前
4秒前
Erica发布了新的文献求助10
4秒前
葛擎苍发布了新的文献求助10
4秒前
vivi完成签到 ,获得积分10
6秒前
6秒前
9秒前
机灵橘子发布了新的文献求助50
10秒前
隐形曼青应助sapphire采纳,获得10
12秒前
cy发布了新的文献求助10
13秒前
Star1983发布了新的文献求助10
13秒前
Cathy完成签到,获得积分10
14秒前
Erica完成签到,获得积分10
14秒前
15秒前
滴滴哒完成签到,获得积分10
15秒前
hhhhmmmn完成签到,获得积分10
15秒前
tian发布了新的文献求助10
15秒前
16秒前
香蕉觅云应助蒙太奇采纳,获得10
18秒前
青青子衿发布了新的文献求助10
19秒前
任性英姑完成签到,获得积分10
19秒前
wanci应助tian采纳,获得10
22秒前
Leyan完成签到,获得积分10
22秒前
彩色的尔珍完成签到,获得积分10
23秒前
ws51823808完成签到,获得积分10
29秒前
美好的元珊完成签到,获得积分10
30秒前
悠旷完成签到 ,获得积分10
32秒前
dongqing12311完成签到,获得积分10
32秒前
hh完成签到 ,获得积分10
33秒前
35秒前
Jojo完成签到,获得积分10
35秒前
Star1983完成签到,获得积分10
36秒前
38秒前
君齐发布了新的文献求助10
41秒前
madmax发布了新的文献求助10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326545
关于积分的说明 10227747
捐赠科研通 3041707
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758745