Transforming the Synthesis of Carbon Nanotubes with Machine Learning Models and Automation

自动化 碳纳米管 计算机科学 纳米技术 制造工程 工程类 材料科学 机械工程
作者
Yue Li,Shurui Wang,Zhou Lv,Zhaoji Wang,Yunbiao Zhao,Ying Xie,Yang Xu,Qian Liu,Yaodong Yang,Ziqiang Zhao,Jin Zhang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2404.01006
摘要

Carbon-based nanomaterials (CBNs) are showing significant potential in various fields, such as electronics, energy, and mechanics. However, their practical applications face synthesis challenges stemming from the complexities of structural control, large-area uniformity, and high yield. Current research methodologies fall short in addressing the multi-variable, coupled interactions inherent to CBNs production. Machine learning methods excel at navigating such complexities. Their integration with automated synthesis platforms has demonstrated remarkable potential in accelerating chemical synthesis research, but remains underexplored in the nanomaterial domain. Here we introduce Carbon Copilot (CARCO), an artificial intelligence (AI)-driven platform that integrates transformer-based language models tailored for carbon materials, robotic chemical vapor deposition (CVD), and data-driven machine learning models, empowering accelerated research of CBNs synthesis. Employing CARCO, we demonstrate innovative catalyst discovery by predicting a superior Titanium-Platinum bimetallic catalyst for high-density horizontally aligned carbon nanotube (HACNT) array synthesis, validated through over 500 experiments. Furthermore, with the assistance of millions of virtual experiments, we achieved an unprecedented 56.25% precision in synthesizing HACNT arrays with predetermined densities in the real world. All were accomplished within just 43 days. This work not only advances the field of HACNT arrays but also exemplifies the integration of AI with human expertise to overcome the limitations of traditional experimental approaches, marking a paradigm shift in nanomaterials research and paving the way for broader applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱非笑完成签到,获得积分20
刚刚
刚刚
蓝色的梦完成签到,获得积分10
刚刚
刚刚
yang完成签到,获得积分10
刚刚
cucumber发布了新的文献求助10
1秒前
天地一体发布了新的文献求助10
1秒前
1秒前
liu发布了新的文献求助10
1秒前
领导范儿应助辛勤饼干采纳,获得10
1秒前
2秒前
我是老大应助夏天采纳,获得10
2秒前
王鹏斐发布了新的文献求助10
2秒前
星辰完成签到,获得积分10
2秒前
充电宝应助拼搏的雨柏采纳,获得10
3秒前
yyd完成签到 ,获得积分10
3秒前
胖胖玩啊玩完成签到 ,获得积分10
4秒前
4秒前
夏阁发布了新的文献求助10
4秒前
小yy发布了新的文献求助10
4秒前
tianji完成签到,获得积分20
4秒前
5秒前
5秒前
小正完成签到,获得积分10
5秒前
5秒前
123发布了新的文献求助10
5秒前
liuyue发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
比奇堡npc发布了新的文献求助10
7秒前
7秒前
小蚂蚁发布了新的文献求助10
7秒前
嘟嘟完成签到,获得积分10
8秒前
抽象蚂蚁应助搞怪的世德采纳,获得10
8秒前
8秒前
Kin完成签到,获得积分10
8秒前
8秒前
rui完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 800
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4384198
求助须知:如何正确求助?哪些是违规求助? 3877554
关于积分的说明 12078799
捐赠科研通 3520890
什么是DOI,文献DOI怎么找? 1932290
邀请新用户注册赠送积分活动 973538
科研通“疑难数据库(出版商)”最低求助积分说明 871773