Transforming the Synthesis of Carbon Nanotubes with Machine Learning Models and Automation

自动化 碳纳米管 计算机科学 纳米技术 制造工程 工程类 材料科学 机械工程
作者
Yue Li,Shurui Wang,Zhou Lv,Zhaoji Wang,Yunbiao Zhao,Ying Xie,Yang Xu,Qian Liu,Yaodong Yang,Ziqiang Zhao,Jin Zhang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2404.01006
摘要

Carbon-based nanomaterials (CBNs) are showing significant potential in various fields, such as electronics, energy, and mechanics. However, their practical applications face synthesis challenges stemming from the complexities of structural control, large-area uniformity, and high yield. Current research methodologies fall short in addressing the multi-variable, coupled interactions inherent to CBNs production. Machine learning methods excel at navigating such complexities. Their integration with automated synthesis platforms has demonstrated remarkable potential in accelerating chemical synthesis research, but remains underexplored in the nanomaterial domain. Here we introduce Carbon Copilot (CARCO), an artificial intelligence (AI)-driven platform that integrates transformer-based language models tailored for carbon materials, robotic chemical vapor deposition (CVD), and data-driven machine learning models, empowering accelerated research of CBNs synthesis. Employing CARCO, we demonstrate innovative catalyst discovery by predicting a superior Titanium-Platinum bimetallic catalyst for high-density horizontally aligned carbon nanotube (HACNT) array synthesis, validated through over 500 experiments. Furthermore, with the assistance of millions of virtual experiments, we achieved an unprecedented 56.25% precision in synthesizing HACNT arrays with predetermined densities in the real world. All were accomplished within just 43 days. This work not only advances the field of HACNT arrays but also exemplifies the integration of AI with human expertise to overcome the limitations of traditional experimental approaches, marking a paradigm shift in nanomaterials research and paving the way for broader applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
YMM完成签到,获得积分10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
林芊万应助科研通管家采纳,获得20
3秒前
胖胖胖胖应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
抽抽应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
归尘应助zxy采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
4秒前
李健应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
ddd发布了新的文献求助10
5秒前
长情诗翠发布了新的文献求助10
6秒前
亚洲黑熊完成签到,获得积分10
6秒前
长情的向真完成签到 ,获得积分10
7秒前
xuxingjie完成签到,获得积分10
7秒前
7秒前
雪见完成签到,获得积分10
8秒前
鸠摩智完成签到,获得积分10
8秒前
hotcas完成签到,获得积分10
8秒前
大方的凌波完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5055726
求助须知:如何正确求助?哪些是违规求助? 4281466
关于积分的说明 13342722
捐赠科研通 4098249
什么是DOI,文献DOI怎么找? 2243484
邀请新用户注册赠送积分活动 1249560
关于科研通互助平台的介绍 1179850