Transforming the Synthesis of Carbon Nanotubes with Machine Learning Models and Automation

自动化 碳纳米管 计算机科学 纳米技术 制造工程 工程类 材料科学 机械工程
作者
Yue Li,Shurui Wang,Zhou Lv,Zhaoji Wang,Yunbiao Zhao,Ying Xie,Yang Xu,Qian Liu,Yaodong Yang,Ziqiang Zhao,Jin Zhang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2404.01006
摘要

Carbon-based nanomaterials (CBNs) are showing significant potential in various fields, such as electronics, energy, and mechanics. However, their practical applications face synthesis challenges stemming from the complexities of structural control, large-area uniformity, and high yield. Current research methodologies fall short in addressing the multi-variable, coupled interactions inherent to CBNs production. Machine learning methods excel at navigating such complexities. Their integration with automated synthesis platforms has demonstrated remarkable potential in accelerating chemical synthesis research, but remains underexplored in the nanomaterial domain. Here we introduce Carbon Copilot (CARCO), an artificial intelligence (AI)-driven platform that integrates transformer-based language models tailored for carbon materials, robotic chemical vapor deposition (CVD), and data-driven machine learning models, empowering accelerated research of CBNs synthesis. Employing CARCO, we demonstrate innovative catalyst discovery by predicting a superior Titanium-Platinum bimetallic catalyst for high-density horizontally aligned carbon nanotube (HACNT) array synthesis, validated through over 500 experiments. Furthermore, with the assistance of millions of virtual experiments, we achieved an unprecedented 56.25% precision in synthesizing HACNT arrays with predetermined densities in the real world. All were accomplished within just 43 days. This work not only advances the field of HACNT arrays but also exemplifies the integration of AI with human expertise to overcome the limitations of traditional experimental approaches, marking a paradigm shift in nanomaterials research and paving the way for broader applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叮叮叮完成签到 ,获得积分10
刚刚
科研通AI5应助jh采纳,获得10
刚刚
1秒前
和和完成签到,获得积分10
1秒前
mikebai完成签到,获得积分10
1秒前
冯家源完成签到,获得积分10
2秒前
科研通AI5应助都是采纳,获得30
3秒前
kean1943完成签到,获得积分10
3秒前
充电宝应助科研达人采纳,获得200
3秒前
4秒前
4秒前
陈成完成签到,获得积分10
4秒前
斑比关注了科研通微信公众号
4秒前
嘿嘿嘿完成签到,获得积分10
4秒前
余味应助海棠采纳,获得10
5秒前
5秒前
mechefy完成签到,获得积分10
6秒前
勤恳的断秋完成签到 ,获得积分10
6秒前
prtrichor599应助落寞寒荷采纳,获得10
7秒前
留胡子的曼香完成签到,获得积分10
7秒前
Jackson_Cai完成签到,获得积分10
7秒前
陈平安完成签到,获得积分10
7秒前
8秒前
你是一个好人甲完成签到,获得积分20
9秒前
JUN完成签到,获得积分10
10秒前
安安完成签到,获得积分10
10秒前
qwepirt发布了新的文献求助10
10秒前
爱学习完成签到,获得积分10
10秒前
左丘忻完成签到,获得积分10
11秒前
冷月芳华完成签到,获得积分10
11秒前
mmm完成签到 ,获得积分10
11秒前
淡淡的如松完成签到 ,获得积分10
11秒前
Buster完成签到,获得积分10
12秒前
二毛完成签到,获得积分10
12秒前
白筠233发布了新的文献求助10
13秒前
lkl发布了新的文献求助10
13秒前
和平发展完成签到,获得积分10
13秒前
一天不学浑身难受完成签到 ,获得积分10
13秒前
网安小趴菜完成签到,获得积分10
14秒前
MMMMMAX应助自然的雁芙采纳,获得50
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795709
求助须知:如何正确求助?哪些是违规求助? 3340749
关于积分的说明 10301635
捐赠科研通 3057268
什么是DOI,文献DOI怎么找? 1677625
邀请新用户注册赠送积分活动 805503
科研通“疑难数据库(出版商)”最低求助积分说明 762642