ISPDiff: Interpretable Scale-Propelled Diffusion Model for Hyperspectral Image Super-Resolution

高光谱成像 遥感 图像分辨率 比例(比率) 分辨率(逻辑) 扩散 人工智能 计算机科学 计算机视觉 地质学 地图学 物理 地理 热力学
作者
Wenqian Dong,Sen Liu,Song Xiao,Jiahui Qu,Yunsong Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:14
标识
DOI:10.1109/tgrs.2024.3407967
摘要

Hyperspectral image (HSI) super-resolution (SR) employing the denoising diffusion probabilistic model (DDPM) holds significant promise with its remarkable performance. However, existing relevant works exhibit two limitations: i) Directly applying DDPM to fusion-based HSI SR (HSI-SR) ignores the physical mechanism of HSI-SR and unique characteristics of HSI, resulting in less interpretability; ii) Scale-invariant DDPM suffers from a time-consuming inference. To tackle these issues, we propose an interpretable scale-propelled diffusion model (ISPDiff) for HSI-SR, which combines the underlying principles of HSI-SR with DDPM for progressively unrolling reconstruction by learning its distribution at various scales, enhancing the transparency significantly and reducing the inference time prominently. Concretely, we destroy and downsample HSI into Gaussian noise in the forward process of ISPDiff. Then we design a unified scale-flexible model in the backward process to iteratively refine HSI in a coarse-to-fine manner through scale-matched reconstruction and cross-scale upsampling, which can be unfolded with optimization algorithms. These solved equations are one-to-one corresponding unrolled into two deep neural networks, called progressive perceptual model-driven scale-matched restoration network (P 2 MSRN) and cross-scale model-driven upsampling network (CMUN). Through end-to-end training, the proposed ISPDiff implements HSI-SR with a scale-propelled unrolling diffusion characterized by enhanced interpretability, stronger task orientation, and reduced time consumption. Systematic experiments have been conducted on three public datasets, demonstrating that ISPDiff outperforms state-of-the-art methods. Code is available at https://github.com/Jiahuiqu/ISPDiff.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
敛袂完成签到,获得积分10
1秒前
yl发布了新的文献求助10
2秒前
琳io发布了新的文献求助10
3秒前
11发布了新的文献求助10
3秒前
Tao关闭了Tao文献求助
3秒前
小小关注了科研通微信公众号
3秒前
ChengYonghui完成签到,获得积分10
3秒前
嘻嘻应助王帅采纳,获得10
4秒前
弋少秋发布了新的文献求助10
5秒前
5秒前
unflycn完成签到,获得积分10
5秒前
5秒前
CoNiCoNi发布了新的文献求助10
5秒前
5秒前
大模型应助隐形香水采纳,获得10
6秒前
6秒前
Lucas应助超级的千青采纳,获得10
7秒前
lbc发布了新的文献求助10
7秒前
8秒前
我是老大应助yl采纳,获得10
8秒前
9秒前
小二郎应助11采纳,获得10
9秒前
10秒前
10秒前
lily发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
Jasper应助元神采纳,获得10
12秒前
ccm应助元神采纳,获得10
12秒前
情怀应助元神采纳,获得10
12秒前
12秒前
张凯茜发布了新的文献求助10
12秒前
熊二发布了新的文献求助10
12秒前
刘玉欣发布了新的文献求助10
13秒前
13秒前
小程同学完成签到,获得积分10
14秒前
14秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131875
求助须知:如何正确求助?哪些是违规求助? 4333485
关于积分的说明 13500924
捐赠科研通 4170518
什么是DOI,文献DOI怎么找? 2286388
邀请新用户注册赠送积分活动 1287217
关于科研通互助平台的介绍 1228262