ISPDiff: Interpretable Scale-Propelled Diffusion Model for Hyperspectral Image Super-Resolution

高光谱成像 遥感 图像分辨率 比例(比率) 分辨率(逻辑) 扩散 人工智能 计算机科学 计算机视觉 地质学 地图学 物理 地理 热力学
作者
Wenqian Dong,Sen Liu,Song Xiao,Jiahui Qu,Yunsong Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:9
标识
DOI:10.1109/tgrs.2024.3407967
摘要

Hyperspectral image (HSI) super-resolution (SR) employing the denoising diffusion probabilistic model (DDPM) holds significant promise with its remarkable performance. However, existing relevant works exhibit two limitations: i) Directly applying DDPM to fusion-based HSI SR (HSI-SR) ignores the physical mechanism of HSI-SR and unique characteristics of HSI, resulting in less interpretability; ii) Scale-invariant DDPM suffers from a time-consuming inference. To tackle these issues, we propose an interpretable scale-propelled diffusion model (ISPDiff) for HSI-SR, which combines the underlying principles of HSI-SR with DDPM for progressively unrolling reconstruction by learning its distribution at various scales, enhancing the transparency significantly and reducing the inference time prominently. Concretely, we destroy and downsample HSI into Gaussian noise in the forward process of ISPDiff. Then we design a unified scale-flexible model in the backward process to iteratively refine HSI in a coarse-to-fine manner through scale-matched reconstruction and cross-scale upsampling, which can be unfolded with optimization algorithms. These solved equations are one-to-one corresponding unrolled into two deep neural networks, called progressive perceptual model-driven scale-matched restoration network (P 2 MSRN) and cross-scale model-driven upsampling network (CMUN). Through end-to-end training, the proposed ISPDiff implements HSI-SR with a scale-propelled unrolling diffusion characterized by enhanced interpretability, stronger task orientation, and reduced time consumption. Systematic experiments have been conducted on three public datasets, demonstrating that ISPDiff outperforms state-of-the-art methods. Code is available at https://github.com/Jiahuiqu/ISPDiff.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Chloe完成签到,获得积分10
刚刚
大美女发布了新的文献求助10
1秒前
U87发布了新的文献求助10
1秒前
soar完成签到,获得积分10
2秒前
Cymatics发布了新的文献求助10
2秒前
jyy应助Ash采纳,获得10
2秒前
Robin95完成签到 ,获得积分10
2秒前
欣喜的斩发布了新的文献求助10
2秒前
3秒前
李健的小迷弟应助111采纳,获得10
3秒前
3秒前
4秒前
birdy完成签到,获得积分10
4秒前
5秒前
甜甜玫瑰应助怡然白竹采纳,获得10
5秒前
啦啦啦啦完成签到,获得积分10
5秒前
晨雾锁阳发布了新的文献求助10
5秒前
zjy发布了新的文献求助10
5秒前
Wyoou完成签到,获得积分10
5秒前
6秒前
7秒前
wanwei完成签到,获得积分10
8秒前
birdy发布了新的文献求助20
8秒前
宋朋锟完成签到,获得积分10
9秒前
飞翔的帅猪完成签到,获得积分10
10秒前
orixero应助zzz采纳,获得10
10秒前
甜甜玫瑰应助小布丁采纳,获得10
11秒前
11秒前
11秒前
11秒前
晚晚完成签到,获得积分20
12秒前
12秒前
andrele应助瘦瘦慕凝采纳,获得10
12秒前
13秒前
13秒前
13秒前
13秒前
曾经的靖发布了新的文献求助10
13秒前
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793765
求助须知:如何正确求助?哪些是违规求助? 3338643
关于积分的说明 10290816
捐赠科研通 3055026
什么是DOI,文献DOI怎么找? 1676315
邀请新用户注册赠送积分活动 804358
科研通“疑难数据库(出版商)”最低求助积分说明 761836