清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Application of Six Metaheuristic Optimization Algorithms and Random Forest in the uniaxial compressive strength of rock prediction

元启发式 均方误差 抗压强度 随机森林 人工神经网络 岩体分类 计算机科学 算法 决定系数 支持向量机 相关系数 机器学习 岩土工程 统计 地质学 材料科学 数学 人工智能 复合材料
作者
Jingze Li,Chuanqi Li,Shaohe Zhang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:131: 109729-109729 被引量:41
标识
DOI:10.1016/j.asoc.2022.109729
摘要

The uniaxial compressive strength (UCS) is one of the most important parameters for judging the mechanical behavior of rock mass in rock engineering design and excavation such as tunnels, subways, drilling, slope and mines stability. However, it is difficult to obtain UCS accurately and quickly in traditional experimental operations. Therefore, prediction of the UCS of rock is of high practical significance in reducing calculation time and improving the precision of results. In this investigation, estimation and prediction of the UCS obtained from various rock in the laboratory on the base of artificial intelligence algorithms and empirical approaches were carried out. A total of 226 rock samples were selected to generate a dataset including five individual parameters, Schmidt hardness rebound number (SHR), P- wave velocity ( V p ), point load strength (Is (50) ), porosity (n), and density (D). The artificial neural network (ANN), kernel based extreme learning machine (KELM), support vector regression (SVR), empirical equations and a hybrid model Slime Mould Algorithm-based random forest (SMA- RF) were developed to predict the UCS. Four performance indicators named the root mean square error (RMSE), the determination coefficient (R 2 ), the mean absolute error (MAE) and the variance accounted for (VAF) were utilized to evaluate the performance of all models in forecasting the UCS of rock. The results of performance comparison demonstrated that the SMA- RF model has the highest values of R 2 (train: 0.9907 and test: 0.9705) and VAF (train: 99.0713 % and test: 97.0753 %), the lowest values of RMSE (train: 4.1478 and test: 7.7824) and MAE (train: 3.0096 and test: 5.8532) among the other models. The research in this study provides an effective attempt to further improve the accuracy of UCS prediction. • Application of six emerging Metaheuristic Optimization Algorithms and RF model in predicting the uniaxial compressive strength (UCS) of rock. • A comprehensive dataset of 226 rock samples with five properties was generated on the base of the four published articles. • The TSO-RF represents the best performance in UCS prediction among all hybrid RF models and other AI models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
5秒前
5秒前
ZZ完成签到,获得积分10
15秒前
22秒前
23秒前
羞涩的文轩完成签到 ,获得积分10
24秒前
苗条高山发布了新的文献求助10
30秒前
35秒前
MMMMM应助科研通管家采纳,获得30
54秒前
gexzygg应助科研通管家采纳,获得10
54秒前
1分钟前
英喆完成签到 ,获得积分10
1分钟前
Yanmiii完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
lily完成签到 ,获得积分10
1分钟前
老石完成签到 ,获得积分10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
MMMMM应助科研通管家采纳,获得30
2分钟前
桦奕兮完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
小二郎应助xue采纳,获得10
3分钟前
woxinyouyou完成签到,获得积分0
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
4分钟前
苏信怜完成签到,获得积分10
5分钟前
刘刘完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
nini完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
情怀应助研友_拓跋戾采纳,获得10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
塔里木盆地肖尔布拉克组微生物岩沉积层序与储层成因 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4270418
求助须知:如何正确求助?哪些是违规求助? 3800870
关于积分的说明 11910965
捐赠科研通 3447741
什么是DOI,文献DOI怎么找? 1891032
邀请新用户注册赠送积分活动 941779
科研通“疑难数据库(出版商)”最低求助积分说明 845903