Are You Stealing My Model? Sample Correlation for Fingerprinting Deep Neural Networks

计算机科学 对抗制 人工智能 杠杆(统计) 指纹(计算) 样品(材料) 机器学习 人工神经网络 成对比较 嫌疑犯 法学 政治学 化学 色谱法
作者
Jiyang Guan,Jian Liang,Ran He
出处
期刊:Cornell University - arXiv 被引量:7
标识
DOI:10.48550/arxiv.2210.15427
摘要

An off-the-shelf model as a commercial service could be stolen by model stealing attacks, posing great threats to the rights of the model owner. Model fingerprinting aims to verify whether a suspect model is stolen from the victim model, which gains more and more attention nowadays. Previous methods always leverage the transferable adversarial examples as the model fingerprint, which is sensitive to adversarial defense or transfer learning scenarios. To address this issue, we consider the pairwise relationship between samples instead and propose a novel yet simple model stealing detection method based on SAmple Correlation (SAC). Specifically, we present SAC-w that selects wrongly classified normal samples as model inputs and calculates the mean correlation among their model outputs. To reduce the training time, we further develop SAC-m that selects CutMix Augmented samples as model inputs, without the need for training the surrogate models or generating adversarial examples. Extensive results validate that SAC successfully defends against various model stealing attacks, even including adversarial training or transfer learning, and detects the stolen models with the best performance in terms of AUC across different datasets and model architectures. The codes are available at https://github.com/guanjiyang/SAC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lizhiqian2024发布了新的文献求助10
刚刚
深情安青应助专注的大炮采纳,获得10
1秒前
asdasd完成签到,获得积分10
3秒前
7秒前
7秒前
8秒前
南风发布了新的文献求助50
10秒前
10秒前
YU发布了新的文献求助10
12秒前
Sewerant完成签到 ,获得积分10
13秒前
荼蘼如雪发布了新的文献求助10
13秒前
13秒前
似宁发布了新的文献求助10
13秒前
15秒前
屈绮兰发布了新的文献求助60
16秒前
16秒前
17秒前
bbbbbbay发布了新的文献求助10
19秒前
依依不舍发布了新的文献求助10
19秒前
李健的小迷弟应助似宁采纳,获得10
19秒前
Stove发布了新的文献求助10
21秒前
21秒前
tanbao发布了新的文献求助10
21秒前
123发布了新的文献求助10
22秒前
田様应助谨慎的咖啡豆采纳,获得10
22秒前
22秒前
yuzhanli发布了新的文献求助10
22秒前
Huajing_Yang发布了新的文献求助50
22秒前
xiaofu完成签到,获得积分10
23秒前
善学以致用应助于明玉采纳,获得10
24秒前
bbbbbbay完成签到,获得积分10
25秒前
yudada完成签到 ,获得积分20
26秒前
Tbq发布了新的文献求助10
26秒前
lulu828完成签到,获得积分10
27秒前
28秒前
28秒前
28秒前
科研通AI2S应助朝霞采纳,获得10
30秒前
彭于晏应助快乐的小乌龟采纳,获得10
31秒前
zer0完成签到,获得积分10
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791108
求助须知:如何正确求助?哪些是违规求助? 3335778
关于积分的说明 10276931
捐赠科研通 3052392
什么是DOI,文献DOI怎么找? 1675123
邀请新用户注册赠送积分活动 803106
科研通“疑难数据库(出版商)”最低求助积分说明 761076