Acute Kidney Injury (AKI) in COVID-19: In silico Identification of LncRNA-MiRNA-Gene Networks and Key Transcription Factors

生物信息学 小RNA 基因表达 转录组 生物 规范化(社会学) 基因 急性肾损伤 计算生物学 基因表达谱 生物信息学 遗传学 医学 内科学 社会学 人类学
作者
Somayeh Hashemi Sheikhshabani,Zeinab Amini‐Farsani,Nesa Kazemifard,Parastoo Modarres,Sharareh Khazaei Feyzabad,Zahra Amini‐Farsani,Nasibeh Shaygan,Mir Davood Omrani,Soudeh Ghafouri‐Fard
出处
期刊:Current Pharmaceutical Design [Bentham Science Publishers]
卷期号:29 (24): 1907-1917 被引量:4
标识
DOI:10.2174/1381612829666230816105221
摘要

Purpose: Acute kidney injury (AKI) accounts for up to 29% of severe COVID-19 cases and increases mortality among these patients. Viral infections participate in the pathogenesis of diseases by changing the expression profile of normal transcriptome. This study attempts to identify LncRNA-miRNA-gene and TF-gene networks as gene expression regulating networks in the kidney tissues of COVID-19 patients. Methods: In this analysis, four kidney libraries from the GEO repository were considered. To conduct the preprocessing, Deseq2 software in R was used for the purpose of data normalization and log2 transformation. In addition, pre- and post-normalization, PCA and box plots were developed using ggplot2 software in R for quality control. The expression profiles of the kidney samples of COVID-19 patients and control individuals were compared using DEseq2 software in R. The considered significance thresholds for DEGs were Adj P value < 0.05 and |logFC| >2. Then, to predict molecular interactions in lncRNA-miRNA-gene networks, different databases, including DeepBase v3.0, miRNATissueAtlas2, DIANA-LncBase v3, and miRWalk, were used. Furthermore, by employing ChEA databases, interactions at the TF-Gene level were obtained. Finally, the obtained networks were plotted using Stringdb and Cytoscape v8. Results: Results obtained from the comparison of the post-mortem kidney tissue samples of the COVID-19 patients with the healthy kidney tissue samples showed significant changes in the expression of more than 2000 genes. In addition, predictions regarding the miRNA-gene interaction network based on DEGs obtained from this meta-analysis showed that 11 miRNAs targeted the obtained DEGs. Interestingly, in the kidney tissue, these 11 miRNAs interacted with LINC01874, LINC01788, and LINC01320, which have high specificity for this tissue. Moreover, four transcription factors of EGR1, SMAD4, STAT3, and CHD1 were identified as key transcription factors regulating DEGs. Taken together, the current study showed several dysregulated genes in the kidney of patients affected with COVID-19. Conclusion: This study suggests lncRNA-miRNA-gene networks and key TFs as new diagnostic and therapeutic targets for experimental and preclinical studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
penghui完成签到,获得积分10
1秒前
1秒前
晓峰完成签到,获得积分10
3秒前
烟花应助大旭采纳,获得10
5秒前
zhhhh完成签到,获得积分20
8秒前
10秒前
11秒前
皮皮鲁完成签到,获得积分10
12秒前
危机的巨人完成签到 ,获得积分10
14秒前
zq完成签到 ,获得积分10
14秒前
noss发布了新的文献求助10
15秒前
风中亦旋完成签到,获得积分10
15秒前
甘楽发布了新的文献求助10
16秒前
Science完成签到,获得积分10
17秒前
在水一方应助小趴菜采纳,获得10
18秒前
21秒前
在水一方应助shjyang采纳,获得10
21秒前
Science发布了新的文献求助10
24秒前
在吃饭的时候吃饭完成签到,获得积分10
25秒前
30秒前
ayer完成签到,获得积分20
32秒前
兮兮糖完成签到,获得积分20
33秒前
35秒前
科研通AI2S应助NO0809采纳,获得10
36秒前
DddZS发布了新的文献求助10
42秒前
脑残骑士老张完成签到,获得积分10
48秒前
ick558完成签到,获得积分10
55秒前
秀丽书南完成签到 ,获得积分10
57秒前
一鸣完成签到 ,获得积分10
57秒前
big ben完成签到 ,获得积分10
1分钟前
1分钟前
忆修完成签到,获得积分10
1分钟前
飞快的珩完成签到,获得积分10
1分钟前
摇光完成签到,获得积分10
1分钟前
慕青应助小趴菜采纳,获得10
1分钟前
善学以致用应助害羞凤灵采纳,获得10
1分钟前
1分钟前
xxyhh发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781269
求助须知:如何正确求助?哪些是违规求助? 3326758
关于积分的说明 10228346
捐赠科研通 3041778
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799134
科研通“疑难数据库(出版商)”最低求助积分说明 758751