A nomogram based on the risk factors of cervical lymph node metastasis in papillary thyroid carcinoma coexistent with Hashimoto’s thyroiditis

列线图 医学 甲状腺癌 甲状腺 放射科 内科学 淋巴结 甲状腺切除术 甲状腺炎 肿瘤科
作者
Huanhuan Miao,Jingwen Zhong,Xuesha Xing,Jiawei Sun,Jiaqi Wu,Chengwei Wu,Yuan Yan,Xian–Li Zhou,Hongbo Wang
出处
期刊:Clinical Hemorheology and Microcirculation [IOS Press]
卷期号:85 (3): 235-247 被引量:1
标识
DOI:10.3233/ch-221673
摘要

The purpose of this study was to explore the risk factors of cervical lymph node metastasis(LNM) in papillary thyroid carcinoma(PTC) coexistent with Hashimoto's thyroiditis(HT).The clinical data of patients who underwent thyroid operation between November 2016 and January 2020 in our hospital were analyzed retrospectively. The association between sonographic features and the risk factors of cervical LNM in PTC coexistent with HT was analyzed and a nomogram based on the risk factors was built.Age, US features as calcification, blood flow type, distance between thyroid nodule and fibrous capsule were risk factors of cervical LNM(P < 0.05).Size, SWVmax and SWVmean of thyroid nodule, SWVratio between thyroid nodule and thyroid gland were higher in PTCs with LNM than those without LNM(P < 0.05). The ROC curve showed that the cutoff value of SWVratio for predicting LNM was 1.29 (Sensitivity = 0.806, Specificity = 0.775, AUC = 0.823, P < 0.001). Based on the risk factors above, a relevant nomogram prediction model was established. The model verification showed that the C-index of the modeling set was 0.814, indicating that the nomogram model had good predicted accuracy.Based on the risk factors above, a relevant nomogram prediction model was established. The model verification showed that the C-index of the modeling set was 0.814, indicating that the nomogram model had good predicted accuracy. The nomogram based on the risk factors above had good prediction ability, which could optimize thyroidectomy and cervical lymph node dissection and improving prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wfy完成签到,获得积分10
5秒前
孙天成完成签到,获得积分20
9秒前
10秒前
刘某完成签到 ,获得积分10
14秒前
虚心雁荷发布了新的文献求助10
14秒前
斯文败类应助李某人采纳,获得10
17秒前
mr发布了新的文献求助10
18秒前
19秒前
一帆风顺发布了新的文献求助10
21秒前
顾矜应助科研通管家采纳,获得10
22秒前
完美世界应助yxy采纳,获得10
22秒前
22秒前
SYLH应助科研通管家采纳,获得10
22秒前
小二郎应助科研通管家采纳,获得10
22秒前
SYLH应助科研通管家采纳,获得10
22秒前
在水一方应助科研通管家采纳,获得10
22秒前
22秒前
虚心雁荷完成签到,获得积分20
22秒前
科研通AI5应助wu采纳,获得10
24秒前
nini发布了新的文献求助30
25秒前
28秒前
31秒前
科研通AI2S应助超级觅柔采纳,获得10
31秒前
CodeCraft应助QQ采纳,获得10
32秒前
张小兔啊完成签到,获得积分10
32秒前
lily336699发布了新的文献求助10
34秒前
ailemonmint完成签到 ,获得积分10
34秒前
沉默的朝雪完成签到,获得积分10
36秒前
38秒前
隐形曼青应助nini采纳,获得10
41秒前
小红书求接接接接一篇完成签到,获得积分20
41秒前
YWang完成签到 ,获得积分10
42秒前
困大颗粒发布了新的文献求助10
42秒前
李俊枫发布了新的文献求助10
45秒前
wu发布了新的文献求助10
46秒前
YY发布了新的文献求助10
50秒前
半只小羊完成签到 ,获得积分10
51秒前
营养师在伊犁跳舞完成签到 ,获得积分10
52秒前
wangyichen完成签到,获得积分10
53秒前
美丽梦秋完成签到,获得积分10
55秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844708
求助须知:如何正确求助?哪些是违规求助? 3387106
关于积分的说明 10547614
捐赠科研通 3107733
什么是DOI,文献DOI怎么找? 1711988
邀请新用户注册赠送积分活动 824242
科研通“疑难数据库(出版商)”最低求助积分说明 774644