Machine learning to predict outcomes following endovascular abdominal aortic aneurysm repair

医学 布里氏评分 接收机工作特性 逻辑回归 腹主动脉瘤 围手术期 动脉瘤 腔内修复术 混淆 死亡率 外科 机器学习 内科学 计算机科学
作者
Ben Li,Badr Aljabri,Raj Verma,Derek Beaton,Naomi Eisenberg,Douglas S. Lee,Duminda N. Wijeysundera,Thomas L. Forbes,Ori D. Rotstein,Charles de Mestral,Muhammad Mamdani,Graham Roche‐Nagle,Mohammed Al‐Omran
出处
期刊:British Journal of Surgery [Oxford University Press]
卷期号:110 (12): 1840-1849 被引量:6
标识
DOI:10.1093/bjs/znad287
摘要

Endovascular aneurysm repair (EVAR) for abdominal aortic aneurysm (AAA) carries important perioperative risks; however, there are no widely used outcome prediction tools. The aim of this study was to apply machine learning (ML) to develop automated algorithms that predict 1-year mortality following EVAR.The Vascular Quality Initiative database was used to identify patients who underwent elective EVAR for infrarenal AAA between 2003 and 2023. Input features included 47 preoperative demographic/clinical variables. The primary outcome was 1-year all-cause mortality. Data were split into training (70 per cent) and test (30 per cent) sets. Using 10-fold cross-validation, 6 ML models were trained using preoperative features with logistic regression as the baseline comparator. The primary model evaluation metric was area under the receiver operating characteristic curve (AUROC). Model robustness was evaluated with calibration plot and Brier score.Some 63 655 patients were included. One-year mortality occurred in 3122 (4.9 per cent) patients. The best performing prediction model for 1-year mortality was XGBoost, achieving an AUROC (95 per cent c.i.) of 0.96 (0.95-0.97). Comparatively, logistic regression had an AUROC (95 per cent c.i.) of 0.69 (0.68-0.71). The calibration plot showed good agreement between predicted and observed event probabilities with a Brier score of 0.04. The top 3 predictive features in the algorithm were 1) unfit for open AAA repair, 2) functional status, and 3) preoperative dialysis.In this data set, machine learning was able to predict 1-year mortality following EVAR using preoperative data and outperformed standard logistic regression models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助欢喜大地采纳,获得10
刚刚
刚刚
yy完成签到,获得积分10
1秒前
yar应助梵樱采纳,获得10
1秒前
crosl发布了新的文献求助10
1秒前
溜了溜了完成签到,获得积分10
1秒前
歪比巴卜完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
小超人发布了新的文献求助10
2秒前
淡定草丛完成签到 ,获得积分10
2秒前
2秒前
2秒前
ghroth完成签到,获得积分10
3秒前
3秒前
勤恳的一斩完成签到,获得积分10
3秒前
CipherSage应助草莓伯伯采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
FelixChen应助科研通管家采纳,获得10
3秒前
FelixChen应助科研通管家采纳,获得10
3秒前
FelixChen应助科研通管家采纳,获得10
4秒前
FelixChen应助科研通管家采纳,获得10
4秒前
CR7应助科研通管家采纳,获得20
4秒前
4秒前
zpz完成签到,获得积分10
4秒前
4秒前
小小博应助科研通管家采纳,获得10
4秒前
spf完成签到,获得积分10
4秒前
cryjslong完成签到,获得积分10
4秒前
4秒前
FelixChen应助科研通管家采纳,获得10
4秒前
CR7应助科研通管家采纳,获得20
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
Young发布了新的文献求助10
5秒前
FelixChen应助科研通管家采纳,获得10
5秒前
xliiii完成签到,获得积分10
5秒前
5秒前
CR7应助科研通管家采纳,获得20
5秒前
5秒前
5秒前
5秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3886144
求助须知:如何正确求助?哪些是违规求助? 3428265
关于积分的说明 10759171
捐赠科研通 3153061
什么是DOI,文献DOI怎么找? 1740829
邀请新用户注册赠送积分活动 840369
科研通“疑难数据库(出版商)”最低求助积分说明 785348