Frequency adaptive fault detection by feature pyramid network with wavelet transform

计算机科学 深度学习 小波 人工智能 棱锥(几何) 带宽(计算) 故障检测与隔离 小波变换 模式识别(心理学) 断层(地质) 地震学 地质学 电信 数学 几何学 执行机构
作者
Ruoshui Zhou,Cheng Zhou,Yaojun Wang,Xingmiao Yao,Guangmin Hu,Fucai Yu
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (6): IM113-IM130 被引量:3
标识
DOI:10.1190/geo2022-0549.1
摘要

Fault detection is a key step in seismic structure interpretation. Current research has achieved good results in fault detection by using synthetic training data to train deep-learning models. However, there is an inevitable difference in frequency bandwidth between synthetic training data and real seismic data, which makes it difficult for deep-learning models to obtain ideal fault detection results on real seismic data. To solve this problem, the feature pyramid network (FPN) is introduced to obtain multiscale deep-learning features, which can reduce the impact of seismic data frequency bandwidth differences on fault detection. Then, we apply the multiscale wavelet transform to extract multiscale frequency spectral features of the seismic data and combine them with the multiscale deep-learning features through concatenation operation. Furthermore, the seismic data is decomposed into signals with different frequency bands through the wavelet transform, and we use the energy of these signals as the network weights of multiscale mixed features to further improve the frequency adaptability of our method. Based on these works, we not only improve the fault detection effect in a specific work area but also improve the generalization ability of the deep-learning model in different work areas, thus further promoting the application of deep learning in actual production. Compared with the fault detection results by the traditional deep-learning model U-Net and the traditional FPN on multiple real seismic data and synthetic seismic data, experimental results demonstrate the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aero完成签到 ,获得积分10
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
CipherSage应助HTB采纳,获得10
2秒前
不敢装睡发布了新的文献求助200
2秒前
7秒前
7秒前
Shamray应助慈祥的鱼采纳,获得10
8秒前
左左完成签到 ,获得积分20
8秒前
轻舟完成签到 ,获得积分10
9秒前
Demonmaster完成签到,获得积分10
9秒前
9秒前
Shuo Yang发布了新的文献求助20
10秒前
fufu关注了科研通微信公众号
11秒前
精明的善斓应助李昕123采纳,获得10
11秒前
13秒前
HTB发布了新的文献求助10
16秒前
小太阳发布了新的文献求助10
16秒前
16秒前
17秒前
JamesPei应助缓慢的灵枫采纳,获得10
17秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
19秒前
夏夜完成签到,获得积分10
20秒前
粗心的小蜜蜂完成签到,获得积分10
20秒前
科研通AI5应助夏夜采纳,获得10
23秒前
Wy应助佰斯特威采纳,获得50
24秒前
26秒前
lyz完成签到,获得积分10
27秒前
爱科研完成签到,获得积分10
28秒前
30秒前
31秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3863263
求助须知:如何正确求助?哪些是违规求助? 3405656
关于积分的说明 10645959
捐赠科研通 3129301
什么是DOI,文献DOI怎么找? 1725792
邀请新用户注册赠送积分活动 831261
科研通“疑难数据库(出版商)”最低求助积分说明 779674