指数稳定性
人工神经网络
理论(学习稳定性)
类型(生物学)
简单(哲学)
控制理论(社会学)
数学
指数函数
应用数学
计算机科学
数学分析
物理
人工智能
非线性系统
机器学习
生物
生态学
哲学
控制(管理)
认识论
量子力学
作者
Chuntao Pang,Song Zhu,Mouquan Shen,Xiaoyang Liu,Shiping Wen
出处
期刊:IEEE Transactions on Circuits and Systems Ii-express Briefs
[Institute of Electrical and Electronics Engineers]
日期:2023-10-11
卷期号:71 (3): 1306-1310
标识
DOI:10.1109/tcsii.2023.3323616
摘要
In this brief, the global exponential stability problem for switched neutral-type neural networks (SNTNNs) with mixed time delays is focused. By spectral properties of Metzler matrix and comparison principle, a sufficient condition for the global exponential stability of the considered SNTNNs is derived, which can be easily tested in practice. Moreover, the result obtained in this brief generalizes the existing achievement and is also effective for NNs without neutral-type delay or switching. Finally, a simple discussion and an illustrative example are presented.
科研通智能强力驱动
Strongly Powered by AbleSci AI