Optimizing d-orbital occupation on interfacial transition metal sites via heterogeneous interface engineering to accelerate oxygen electrode reaction kinetics in lithium-oxygen batteries

过电位 材料科学 锂(药物) 电子转移 氧化还原 电极 催化作用 析氧 氧气 化学工程 动力学 化学物理 纳米技术 电化学 光化学 物理化学 化学 医学 生物化学 物理 有机化学 量子力学 工程类 冶金 内分泌学
作者
Guilei Tian,Haoyang Xu,Xinxiang Wang,Xiaojuan Wen,Ting Zeng,Sheng Liu,Fengxia Fan,Wei Xiang,Chaozhu Shu
出处
期刊:Nano Energy [Elsevier BV]
卷期号:117: 108863-108863 被引量:30
标识
DOI:10.1016/j.nanoen.2023.108863
摘要

Aprotic lithium-oxygen batteries (LOBs) possess extremely high theoretical energy density of about 3500 Wh kg-1, which is superior to state-of-the-art lithium-ion batteries. However, the poor energy efficiency and cyclability originated from sluggish kinetics of oxygen electrode reactions in LOBs severely restrict their development and practical application. The solution to these challenges is closely related to the construction of electrocatalysts with both high catalytic activity and stability for oxygen redox reactions in LOBs. In this work, Co3O4 @NiFe2O4 composite with modified heterogeneous interface is fabricated and studied as oxygen electrode catalyst for LOBs. It is theoretically predicted that the electron transfer at the heterogeneous interface in Co3O4 @NiFe2O4 is capable of reducing the occupation of eg electrons in the interfacial Ni sites, leading to the rearrangement of electrons with enhanced spin polarization in the d orbital and the upshift of the d-band center toward Fermi level, eventually enabling the smooth electron transfer between Co3O4 @NiFe2O4 and oxygenated species due to the facile formation of Ni-O bond. This endows Co3O4 @NiFe2O4 based LOBs with high specific capacity of 12697 mAh g-1 and extremely low overpotential of 0.68 V at 100 mA g-1, as well as long cycle life of 274 times at a high current density of 500 mA g-1. This work provides a new strategy for adjusting the surface electronic structure of oxygen electrode catalysts to accelerate oxygen redox kinetics in LOBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
4秒前
可爱的函函应助辛勤又蓝采纳,获得10
5秒前
6秒前
lish发布了新的文献求助10
6秒前
陈玥桦发布了新的文献求助10
8秒前
不得不爱完成签到,获得积分20
8秒前
msn00发布了新的文献求助10
9秒前
9秒前
逍遥完成签到,获得积分10
10秒前
11秒前
tumao完成签到 ,获得积分10
12秒前
Yuan完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
16秒前
16秒前
huang发布了新的文献求助10
16秒前
17秒前
17秒前
Aurelia完成签到 ,获得积分10
19秒前
20秒前
luanzhaohui发布了新的文献求助10
21秒前
21秒前
酷酷友容发布了新的文献求助10
21秒前
cooper完成签到 ,获得积分10
22秒前
25秒前
26秒前
26秒前
28秒前
PhD_Lee73完成签到 ,获得积分10
28秒前
zhangzhang发布了新的文献求助10
32秒前
善学以致用应助cooper采纳,获得10
33秒前
TIGun发布了新的文献求助10
33秒前
35秒前
36秒前
hucchongzi应助L_online采纳,获得30
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323857
关于积分的说明 10216183
捐赠科研通 3039074
什么是DOI,文献DOI怎么找? 1667762
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366