亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quantitative Correlation between Defect Density and Heterogeneous Electron Transfer Rate of Single Layer Graphene

石墨烯 拉曼光谱 化学 电子转移 费米能级 密度泛函理论 空位缺陷 石墨烯纳米带 纳米技术 化学物理 电化学 态密度 电极 电子 材料科学 凝聚态物理 计算化学 结晶学 物理化学 光学 物理 量子力学
作者
Jin‐Hui Zhong,Jie Zhang,Xi Jin,Junyang Liu,Qiongyu Li,Maohua Li,Weiwei Cai,De‐Yin Wu,Dongping Zhan,Bin Ren
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:136 (47): 16609-16617 被引量:242
标识
DOI:10.1021/ja508965w
摘要

Improving electrochemical activity of graphene is crucial for its various applications, which requires delicate control over its geometric and electronic structures. We demonstrate that precise control of the density of vacancy defects, introduced by Ar+ irradiation, can improve and finely tune the heterogeneous electron transfer (HET) rate of graphene. For reliable comparisons, we made patterns with different defect densities on a same single layer graphene sheet, which allows us to correlate defect density (via Raman spectroscopy) with HET rate (via scanning electrochemical microscopy) of graphene quantitatively, under exactly the same experimental conditions. By balancing the defect induced increase of density of states (DOS) and decrease of conductivity, the optimal HET rate is attained at a moderate defect density, which is in a critical state; that is, the whole graphene sheet becomes electronically activated and, meanwhile, maintains structural integrity. The improved electrochemical activity can be understood by a high DOS near the Fermi level of defective graphene, as revealed by ab initio simulation, which enlarges the overlap between the electronic states of graphene and the redox couple. The results are valuable to promote the performance of graphene-based electrochemical devices. Furthermore, our findings may serve as a guide to tailor the structure and properties of graphene and other ultrathin two-dimensional materials through defect density engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得10
2秒前
嘻嘻哈哈应助科研通管家采纳,获得10
2秒前
7秒前
FJXTY发布了新的文献求助10
10秒前
热情依白完成签到 ,获得积分10
12秒前
20秒前
FJXTY完成签到,获得积分10
20秒前
22秒前
25秒前
yihuifa发布了新的文献求助10
30秒前
36秒前
1分钟前
slz发布了新的文献求助10
1分钟前
Thanks完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
JamesPei应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
Proxac完成签到,获得积分10
2分钟前
Proxac发布了新的文献求助20
2分钟前
2分钟前
科研通AI6应助evermore采纳,获得10
2分钟前
2分钟前
清风朗月发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
大模型应助迅速的岩采纳,获得10
3分钟前
3分钟前
香蕉觅云应助科研通管家采纳,获得10
4分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
4分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
4分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
4分钟前
4分钟前
evermore发布了新的文献求助10
4分钟前
符寄云发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482443
求助须知:如何正确求助?哪些是违规求助? 4583236
关于积分的说明 14389049
捐赠科研通 4512328
什么是DOI,文献DOI怎么找? 2472820
邀请新用户注册赠送积分活动 1459053
关于科研通互助平台的介绍 1432553