Effect of Sulfide Additives on the Discharge Characteristics of Iron Electrodes in Alkaline Batteries

硫化物 碱性电池 无机化学 硫化铁 电极 材料科学 氧化铁 硫化铅 氧化物 化学 电解质 冶金 硫黄 纳米技术 物理化学 量子点
作者
Aswin K. Manohar,Chenguang Yang,S. R. Narayanan
出处
期刊:Meeting abstracts 卷期号:MA2016-01 (3): 390-390 被引量:1
标识
DOI:10.1149/ma2016-01/3/390
摘要

Iron-based rechargeable alkaline batteries such as nickel-iron and iron-air are attractive candidates for large-scale energy storage applications because of the low cost and robustness of the iron electrode. [1] We have recently reported significant advancements in the charging efficiency and discharge rate capability of iron-based alkaline battery electrodes. [2, 3] By using carbonyl iron as the electrode active material and by including additives such as bismuth sulfide and bismuth oxide, charging efficiencies greater than 90% have been demonstrated. To improve the utilization of the iron electrode and achieve high-discharge-rate capability, sulfide additives are necessary. The importance of sulfide additives in de-passivating the iron electrode during discharge has been reported in the literature. [4-6] Various sulfide-based additives such as sodium sulfide, bismuth sulfide, lead sulfide, and iron sulfide have been successfully employed as de-passivating agents. However, a mechanistic understanding of the effect of different sulfide additives on the polarization characteristics of the iron electrode during discharge is not available. The goal of the present study is to understand the effect of different sulfide additives on the anodic polarization, impedance response, and discharge characteristics of the iron electrode. Iron electrodes were prepared by mixing carbonyl iron powder with polyethylene binder and hot-pressing the mixture onto a nickel grid. In some cases, additives such as bismuth sulfide, bismuth oxide or iron sulfide in the concentration range of 1-10 wt.% were added to the powder mixture prior to pressing. Electrochemical testing was performed in a three-electrode configuration with a mercury/mercuric oxide (MMO) reference electrode and nickel oxide counter electrodes. The capacity of carbonyl iron electrodes with various sulfide additives at different discharge rates is shown in Figure 1. In the presence of bismuth sulfide additive, the discharge capacity of the iron electrode at the 1C rate was 0.2 Ah/g – significantly higher compared to that of the ‘sulfide-free’ iron electrode. With iron sulfide additive, the iron electrode was able to sustain discharge rates as high as 3C for similar levels of electrode utilization. (Figure 1) The results from the discharge rate capability experiments are consistent with the polarization behavior of the iron electrodes with different additives (Figure 2). When a ‘sulfide-free’ iron electrode is polarized positive to -0.85 V, the discharge current decreased signifying the onset of passivation (Figure 2). However, when sulfide additives are present, the polarization curves do not show any current limitation due to electrode passivation. The amount of charge required for the iron electrode to undergo passivation has been measured at various states of charge. Analysis of this data is anticipated to provide insight into the process of passivation. An understanding of the effectiveness of various sulfide additives in de-passivating the iron electrode and improving the discharge rate capability will also be presented. Acknowledgement: The research reported here was supported by the U.S. Department of Energy ARPA-E (GRIDS program, DE-AR0000136), the Loker Hydrocarbon Research Institute, and the University of Southern California. References: S. R. Narayanan, G. K. S. Prakash, A. Manohar, B. Yang, S. Malkhandi, A. Kindler, Solid State Ionics , 216 , 105 (2012). A. K. Manohar, C. Yang, S. Malkhandi, G. K. S. Prakash, S. R. Narayanan, J. Electrochem. Soc . 160 , A2078 (2013). A. K. Manohar, S. Malkhandi, B. Yang, C. Yang, G. K. S. Prakash, S. R. Narayanan, J. Electrochem. Soc. , 159 ,A1209 (2012). A. K. Manohar, C. Yang, S. R. Narayanan, J. Electrochem. Soc., 162 , A1864 (2015). T. S. Balasubramanian, A. K. Shukla, J. Power Sources, 41 , 99 (1993). K. Micka, Z. Zabransky, J. Power Sources , 19, 315 (1987). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
hhhhhhhh发布了新的文献求助10
刚刚
1秒前
2秒前
汉堡包应助henryoy采纳,获得10
2秒前
3秒前
3秒前
mj01发布了新的文献求助10
3秒前
充电宝应助Emma采纳,获得10
3秒前
5秒前
老王爱学习完成签到,获得积分10
5秒前
的呀呀发布了新的文献求助10
5秒前
5秒前
6秒前
Truth发布了新的文献求助10
6秒前
William_l_c完成签到,获得积分10
6秒前
阿斯蒂芬完成签到,获得积分10
6秒前
王弈轩发布了新的文献求助10
7秒前
上官若男应助Leon采纳,获得10
7秒前
jie发布了新的文献求助10
7秒前
丘比特应助ylq采纳,获得10
7秒前
8秒前
Qing完成签到,获得积分10
8秒前
ccc发布了新的文献求助10
8秒前
怡然万声发布了新的文献求助10
9秒前
落海发布了新的文献求助10
10秒前
CipherSage应助发条采纳,获得10
10秒前
11秒前
linnn完成签到,获得积分10
11秒前
11秒前
11秒前
聪明的破茧完成签到,获得积分10
12秒前
YH完成签到,获得积分10
12秒前
星辰大海应助无奈采纳,获得10
12秒前
自由能发布了新的文献求助10
13秒前
13秒前
赘婿应助阳光刺眼采纳,获得10
13秒前
ZZZ发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3947472
求助须知:如何正确求助?哪些是违规求助? 3492741
关于积分的说明 11066427
捐赠科研通 3223582
什么是DOI,文献DOI怎么找? 1781591
邀请新用户注册赠送积分活动 866393
科研通“疑难数据库(出版商)”最低求助积分说明 800332