In Situ TEM Investigation of Congruent Phase Transition and Structural Evolution of Nanostructured Silicon/Carbon Anode for Lithium Ion Batteries

材料科学 成核 阳极 无定形固体 化学工程 相(物质) 化学物理 结晶 透射电子显微镜 纳米技术 结晶学 光电子学 化学 电极 物理化学 有机化学 工程类
作者
Chong-Min Wang,Xiaolin Li,Zhiguo Wang,Wu Xu,Jun Liu,Fei Gao,Libor Kovařík,Ji‐Guang Zhang,Jane Y. Howe,David J. Burton,Zhongyi Liu,Xingcheng Xiao,Suntharampillai Thevuthasan,Donald R. Baer
出处
期刊:Nano Letters [American Chemical Society]
卷期号:12 (3): 1624-1632 被引量:275
标识
DOI:10.1021/nl204559u
摘要

It is well-known that upon lithiation, both crystalline and amorphous Si transform to an armorphous Li(x)Si phase, which subsequently crystallizes to a (Li, Si) crystalline compound, either Li(15)Si(4) or Li(22)Si(5). Presently, the detailed atomistic mechanism of this phase transformation and the degradation process in nanostructured Si are not fully understood. Here, we report the phase transformation characteristic and microstructural evolution of a specially designed amorphous silicon (a-Si) coated carbon nanofiber (CNF) composite during the charge/discharge process using in situ transmission electron microscopy and density function theory molecular dynamic calculation. We found the crystallization of Li(15)Si(4) from amorphous Li(x)Si is a spontaneous, congruent phase transition process without phase separation or large-scale atomic motion, which is drastically different from what is expected from a classic nucleation and growth process. The a-Si layer is strongly bonded to the CNF and no spallation or cracking is observed during the early stages of cyclic charge/discharge. Reversible volume expansion/contraction upon charge/discharge is fully accommodated along the radial direction. However, with progressive cycling, damage in the form of surface roughness was gradually accumulated on the coating layer, which is believed to be the mechanism for the eventual capacity fade of the composite anode during long-term charge/discharge cycling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
浮游应助www采纳,获得10
1秒前
1秒前
YOITO完成签到,获得积分20
2秒前
5秒前
5秒前
6秒前
wanhe发布了新的文献求助10
7秒前
浮游应助罗霄山采纳,获得10
7秒前
慕青应助怂怂鼠采纳,获得10
8秒前
苏格拉底的嘲笑完成签到,获得积分10
8秒前
afeiwoo完成签到,获得积分10
8秒前
10秒前
四少发布了新的文献求助10
11秒前
清新的涵双完成签到,获得积分10
14秒前
15秒前
斐然完成签到,获得积分10
15秒前
可爱的函函应助www采纳,获得10
16秒前
16秒前
18秒前
gaoyankai发布了新的文献求助10
19秒前
耕牛热完成签到,获得积分10
19秒前
漫步云端发布了新的文献求助30
20秒前
philip发布了新的文献求助10
22秒前
czyzyzy完成签到,获得积分10
23秒前
Parotodus完成签到,获得积分10
23秒前
zzq发布了新的文献求助10
23秒前
24秒前
乐乐应助杳杳采纳,获得10
25秒前
26秒前
limuzi827完成签到 ,获得积分10
28秒前
所所应助科研通管家采纳,获得10
29秒前
汉堡包应助科研通管家采纳,获得10
29秒前
JamesPei应助科研通管家采纳,获得150
29秒前
爆米花应助科研通管家采纳,获得10
29秒前
传奇3应助科研通管家采纳,获得10
29秒前
隐形曼青应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
镜哥完成签到,获得积分10
29秒前
changping应助科研通管家采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298901
求助须知:如何正确求助?哪些是违规求助? 4447324
关于积分的说明 13842250
捐赠科研通 4332888
什么是DOI,文献DOI怎么找? 2378387
邀请新用户注册赠送积分活动 1373683
关于科研通互助平台的介绍 1339259