Mutational heterogeneity in cancer and the search for new cancer-associated genes

生物 遗传学 基因组 癌症 外显子组 外显子组测序 突变 基因 DNA测序 人类基因组 癌症基因组测序 计算生物学
作者
Michael S. Lawrence,Petar Stojanov,Paz Polak,Gregory V. Kryukov,Kristian Cibulskis,Andrey Sivachenko,Scott L. Carter,Chip Stewart,Craig H. Mermel,Steven A. Roberts,Adam Kieżun,Peter S. Hammerman,Aaron McKenna,Yotam Drier,Lihua Zou,Alex H. Ramos,Trevor J. Pugh,Nicolas Stransky,Elena Helman,Jaegil Kim
出处
期刊:Nature [Springer Nature]
卷期号:499 (7457): 214-218 被引量:5564
标识
DOI:10.1038/nature12213
摘要

As the sample size in cancer genome studies increases, the list of genes identified as significantly mutated is likely to include more false positives; here, this problem is identified as stemming largely from mutation heterogeneity, and a new analytical methodology designed to overcome this problem is described. Cancer genomic approaches have identified scores of genes responsible for the initiation and progression of cancer. But as the sample sizes increase, the list of putatively significant genes identified by current analytical methods continues to grow and is likely to include many false positives. This study shows that this situation stems largely from mutational heterogeneity and presents a novel methodology, MutSigCV, that overcomes the problem by incorporating mutational heterogeneity into the analysis. Application of MutSigCV to more than 3,000 tumour samples from 27 different tumour types shows that mutation frequencies vary more than 1,000-fold between extreme samples both between and within tumour types. And when applied to a data set on lung cancer, MutSigCV reduced the list of significantly mutated genes from 450 to a more manageable 11, most of them previously reported to be mutated in squamous cell lung cancer. Major international projects are underway that are aimed at creating a comprehensive catalogue of all the genes responsible for the initiation and progression of cancer1,2,3,4,5,6,7,8,9. These studies involve the sequencing of matched tumour–normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds. The list includes many implausible genes (such as those encoding olfactory receptors and the muscle protein titin), suggesting extensive false-positive findings that overshadow true driver events. We show that this problem stems largely from mutational heterogeneity and provide a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to exome sequences from 3,083 tumour–normal pairs and discover extraordinary variation in mutation frequency and spectrum within cancer types, which sheds light on mutational processes and disease aetiology, and in mutation frequency across the genome, which is strongly correlated with DNA replication timing and also with transcriptional activity. By incorporating mutational heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual findings and enable the identification of genes truly associated with cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lqx完成签到,获得积分10
刚刚
zpp发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
2秒前
xyx完成签到,获得积分20
2秒前
3秒前
Iva完成签到 ,获得积分10
3秒前
3秒前
研友_VZG7GZ应助刘旭晴采纳,获得10
5秒前
悟空应助陈椅子的求学采纳,获得10
5秒前
zjp_88258825发布了新的文献求助10
5秒前
方可完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
深情安青应助读读读采纳,获得10
8秒前
嘟嘟图图发布了新的文献求助10
8秒前
Maggie发布了新的文献求助10
8秒前
WWY完成签到,获得积分10
8秒前
qi0625完成签到,获得积分10
9秒前
灵巧夏彤完成签到 ,获得积分10
9秒前
xyx发布了新的文献求助20
10秒前
10秒前
12秒前
hi关注了科研通微信公众号
12秒前
嘟嘟图图完成签到,获得积分10
13秒前
Owen应助绝塵采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
玉洁发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
田様应助小黑板采纳,获得10
17秒前
17秒前
abjz发布了新的文献求助10
17秒前
17秒前
casino完成签到,获得积分10
18秒前
布打勒应助redamancy采纳,获得10
18秒前
19秒前
上官若男应助morena采纳,获得10
19秒前
Hus11221发布了新的文献求助50
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5721008
求助须知:如何正确求助?哪些是违规求助? 5263816
关于积分的说明 15293068
捐赠科研通 4870253
什么是DOI,文献DOI怎么找? 2615422
邀请新用户注册赠送积分活动 1565252
关于科研通互助平台的介绍 1522319