已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Which log variables significantly predict academic achievement? A systematic review and meta‐analysis

适度 学习分析 学业成绩 心理学 考试(生物学) 荟萃分析 实证研究 透视图(图形) 变量 数学教育 计算机科学 数据科学 统计 社会心理学 数学 人工智能 机器学习 医学 古生物学 内科学 生物
作者
Qin Wang,Amin Mousavi
出处
期刊:British Journal of Educational Technology [Wiley]
卷期号:54 (1): 142-191 被引量:25
标识
DOI:10.1111/bjet.13282
摘要

Abstract Technologies and teaching practices can provide a rich log data, which enables learning analytics (LA) to bring new insights into the learning process for ultimately enhancing student success. This type of data has been used to discover student online learning patterns, relationships between online learning behaviors and assessment performance. Previous studies have provided empirical evidence that not all log variables were significantly associated with student academic achievement and the relationships varied across courses. Therefore, this study employs a systematic review with meta‐analysis method to provide a comprehensive review of the log variables that have an impact on student academic achievement. We searched six databases and reviewed 88 relevant empirical studies published from 2010 to 2021 for an in‐depth analysis. The results show different types of log variables and the learning contexts investigated in the reviewed studies. We also included four moderating factors to do moderator analyses. A further significance test was performed to test the difference of effect size among different types of log variables. Limitations and future research expectations are provided subsequently. Practitioner notes What is already known about this topic Significant relationship between active engagement in online courses and academic achievement was identified in a number of previous studies. Researchers have reviewed the literature to examine different aspects of applying LA to gain insights for monitoring student learning in digital environments (eg, data sources, data analysis techniques). What this paper adds Presents a new perspective of the log variables, which provides a reliable quantitative conclusion of log variables in predicting student academic achievement. Conducted subgroup analysis, examined four potential moderating variables and identified their moderating effect on several log variables such as regularity of study interval, number of online sessions, time‐on‐task, starting late and late submission. Compared the effect of generic and course‐specific, basic and elaborated log variables, and found significant difference between the basic and elaborated. Implications for practice and/or policy A depth of understanding of these log variables may enable researchers to build robust prediction models. It can guide the instructors to timely adjust teaching strategies according to their online learning behaviors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wy.he应助爱吃汤圆的猫采纳,获得30
刚刚
1秒前
可可完成签到,获得积分10
2秒前
fooly关注了科研通微信公众号
3秒前
项之桃完成签到,获得积分10
3秒前
月屿完成签到 ,获得积分10
4秒前
4秒前
masterchen发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
曹伟完成签到,获得积分20
5秒前
Zozo发布了新的文献求助20
5秒前
猪猪hero应助魏伯安采纳,获得10
6秒前
CodeCraft应助miao采纳,获得10
7秒前
小聖完成签到 ,获得积分10
9秒前
曹伟发布了新的文献求助30
10秒前
11秒前
Jasper应助Norl_Corxilea采纳,获得20
12秒前
13秒前
13秒前
xxp完成签到 ,获得积分20
14秒前
ni完成签到,获得积分10
14秒前
15秒前
16秒前
18秒前
格物致知发布了新的文献求助10
18秒前
zz完成签到,获得积分10
18秒前
beetes发布了新的文献求助10
19秒前
20秒前
SciGPT应助韩凡采纳,获得10
20秒前
轻松的悟空完成签到 ,获得积分10
21秒前
科研通AI2S应助期待采纳,获得10
22秒前
CChi0923发布了新的文献求助10
22秒前
李健应助zz采纳,获得10
24秒前
25秒前
JG应助lyhsg采纳,获得10
26秒前
26秒前
26秒前
beetes完成签到,获得积分10
27秒前
BINGBING发布了新的文献求助30
27秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3889091
求助须知:如何正确求助?哪些是违规求助? 3431330
关于积分的说明 10773417
捐赠科研通 3156322
什么是DOI,文献DOI怎么找? 1743085
邀请新用户注册赠送积分活动 841486
科研通“疑难数据库(出版商)”最低求助积分说明 785966