已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Recognition of necrotic regions in MRI images of chronic spinal cord injury based on superpixel

支持向量机 磁共振成像 脊髓损伤 Sørensen–骰子系数 模式识别(心理学) 医学 随机森林 局部二进制模式 脊髓 人工智能 计算机科学 分割 放射科 图像分割 直方图 精神科 图像(数学)
作者
Xing-Xing Bao,Can Zhao,Shu-Sheng Bao,Jia‐Sheng Rao,Zhaoyang Yang,Xiaoguang Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:228: 107252-107252 被引量:6
标识
DOI:10.1016/j.cmpb.2022.107252
摘要

The cystic cavity and its surrounding dense glial scar formed in chronic spinal cord injury (SCI) hinder the regeneration of nerve axons. Accurate location of the necrotic regions formed by the scar and the cavity is conducive to eliminate the re-growth obstacles and promote SCI treatment. This work aims to realize the accurate and automatic location of necrotic regions in the chronic SCI magnetic resonance imaging (MRI).In this study, a method based on superpixel is proposed to identify the necrotic regions of spinal cord in chronic SCI MRI. Superpixels were obtained by a simple linear iterative clustering algorithm, and feature sets were constructed from intensity statistical features, gray level co-occurrence matrix features, Gabor texture features, local binary pattern features and superpixel areas. Subsequently, the recognition effects of support vector machine (SVM) and random forest (RF) classification model on necrotic regions were compared from accuracy (ACC), positive predictive value (PPV), sensitivity (SE), specificity (SP), Dice coefficient and algorithm running time.The method is evaluated on T1- and T2-weighted MRI spinal cord images of 24 adult female Wistar rats. And an automatic recognition method for spinal cord necrosis regions was established based on the SVM classification model finally. The recognition results were 1.00±0.00 (ACC), 0.89±0.09 (PPV), 0.88±0.12 (SE), 1.00±0.00 (SP) and 0.88±0.07 (Dice), respectively.The proposed method can accurately and noninvasively identify the necrotic regions in MRI, which is helpful for the pre-intervention assessment and post-intervention evaluation of chronic SCI research and treatments, and promoting the clinical transformation of chronic SCI research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿嘿发布了新的文献求助50
5秒前
Z17应助chengmin采纳,获得10
6秒前
6秒前
js完成签到,获得积分10
9秒前
11秒前
今后应助飞翔采纳,获得10
12秒前
wwwww发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
14秒前
Leo发布了新的文献求助10
16秒前
18秒前
科目三应助嘿嘿采纳,获得10
19秒前
专注寻菱发布了新的文献求助10
22秒前
闾丘翠桃发布了新的文献求助10
24秒前
冰棒比冰冰完成签到 ,获得积分10
26秒前
mmz完成签到 ,获得积分10
29秒前
29秒前
小孩015完成签到 ,获得积分10
30秒前
SNP1988完成签到 ,获得积分10
32秒前
33秒前
闾丘翠桃完成签到,获得积分10
34秒前
哈哈发布了新的文献求助10
36秒前
量子星尘发布了新的文献求助10
39秒前
42秒前
一丁雨发布了新的文献求助10
46秒前
bc应助凝凝采纳,获得10
47秒前
48秒前
52秒前
酷炫的幻丝完成签到 ,获得积分10
52秒前
自然秋柳发布了新的文献求助10
52秒前
丘比特应助chy采纳,获得10
56秒前
57秒前
57秒前
Leo完成签到,获得积分10
58秒前
Hello应助等待寄云采纳,获得10
1分钟前
1分钟前
1分钟前
keke发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Semiconductor devices : pioneering papers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3862251
求助须知:如何正确求助?哪些是违规求助? 3404782
关于积分的说明 10641293
捐赠科研通 3128016
什么是DOI,文献DOI怎么找? 1725013
邀请新用户注册赠送积分活动 830762
科研通“疑难数据库(出版商)”最低求助积分说明 779429