Predicting the potential human lncRNA–miRNA interactions based on graph convolution network with conditional random field

计算机科学 条件随机场 嵌入 异构网络 人工智能 计算生物学 理论计算机科学 生物 无线网络 无线 电信
作者
Wenya Wang,Li Zhang,Jianqiang Sun,Qi Zhao,Jianwei Shuai
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (6) 被引量:142
标识
DOI:10.1093/bib/bbac463
摘要

Abstract Long non-coding RNA (lncRNA) and microRNA (miRNA) are two typical types of non-coding RNAs (ncRNAs), their interaction plays an important regulatory role in many biological processes. Exploring the interactions between unknown lncRNA and miRNA can help us better understand the functional expression between lncRNA and miRNA. At present, the interactions between lncRNA and miRNA are mainly obtained through biological experiments, but such experiments are often time-consuming and labor-intensive, it is necessary to design a computational method that can predict the interactions between lncRNA and miRNA. In this paper, we propose a method based on graph convolutional neural (GCN) network and conditional random field (CRF) for predicting human lncRNA–miRNA interactions, named GCNCRF. First, we construct a heterogeneous network using the known interactions of lncRNA and miRNA in the LncRNASNP2 database, the lncRNA/miRNA integration similarity network, and the lncRNA/miRNA feature matrix. Second, the initial embedding of nodes is obtained using a GCN network. A CRF set in the GCN hidden layer can update the obtained preliminary embeddings so that similar nodes have similar embeddings. At the same time, an attention mechanism is added to the CRF layer to reassign weights to nodes to better grasp the feature information of important nodes and ignore some nodes with less influence. Finally, the final embedding is decoded and scored through the decoding layer. Through a 5-fold cross-validation experiment, GCNCRF has an area under the receiver operating characteristic curve value of 0.947 on the main dataset, which has higher prediction accuracy than the other six state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kalimba完成签到,获得积分10
刚刚
Jasper应助烈阳采纳,获得30
刚刚
刚刚
cy发布了新的文献求助10
1秒前
1秒前
今后应助liang采纳,获得10
1秒前
2秒前
一念初见发布了新的文献求助10
2秒前
桐桐应助DoIt采纳,获得50
4秒前
yuhui发布了新的文献求助10
4秒前
烟花应助huihui采纳,获得10
5秒前
5秒前
安详的惜梦完成签到 ,获得积分10
5秒前
哇wwwww完成签到,获得积分10
5秒前
感动书竹完成签到,获得积分10
5秒前
6秒前
6秒前
高高的从波完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
希望天下0贩的0应助Cici采纳,获得10
7秒前
陈谨完成签到 ,获得积分10
7秒前
paul完成签到,获得积分10
7秒前
tw0125完成签到 ,获得积分10
7秒前
hbsand应助感动书竹采纳,获得20
8秒前
Owen应助jeep先生采纳,获得10
8秒前
niceweiwei完成签到 ,获得积分10
9秒前
浮名半生发布了新的文献求助10
9秒前
紫瓜完成签到,获得积分10
10秒前
10秒前
狂野飞柏完成签到 ,获得积分10
10秒前
云吞哦完成签到,获得积分10
10秒前
NINI发布了新的文献求助10
11秒前
12秒前
科研通AI5应助shuaishuyi采纳,获得10
12秒前
12秒前
13完成签到 ,获得积分10
13秒前
13秒前
博修发布了新的文献求助10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793230
求助须知:如何正确求助?哪些是违规求助? 3337971
关于积分的说明 10287780
捐赠科研通 3054528
什么是DOI,文献DOI怎么找? 1675991
邀请新用户注册赠送积分活动 804036
科研通“疑难数据库(出版商)”最低求助积分说明 761715