Deep learning image reconstruction algorithm for carotid dual-energy computed tomography angiography: evaluation of image quality and diagnostic performance

医学 迭代重建 图像质量 双重能量 神经组阅片室 超声波 介入放射学 放射科 血管造影 断层摄影术 计算机断层摄影术 计算机断层血管造影 医学物理学 算法 计算机视觉 人工智能 图像(数学) 计算机科学 病理 骨矿物 骨质疏松症 精神科 神经学
作者
Chenyu Jiang,Dan Jin,Zhuoheng Liu,Yan Zhang,Ming Ni,Huishu Yuan
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:13 (1) 被引量:12
标识
DOI:10.1186/s13244-022-01308-2
摘要

Abstract Objectives To evaluate image quality and diagnostic performance of carotid dual-energy computed tomography angiography (DECTA) using deep learning image reconstruction (DLIR) compared with images using adaptive statistical iterative reconstruction-Veo (ASIR-V). Methods Carotid DECTA datasets of 28 consecutive patients were reconstructed at 50 keV using DLIR at low, medium, and high levels (DLIR-L, DLIR-M, and DLIR-H) and 80% ASIR-V algorithms. Mean attenuation, image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) at different levels of arteries were measured and calculated. Image quality for noise and texture, depiction of arteries, and diagnostic performance toward carotid plaques were assessed subjectively by two radiologists. Quantitative and qualitative parameters were compared between the ASIR-V, DLIR-L, DLIR-M, and DLIR-H groups. Results The image noise at aorta and common carotid artery, SNR, and CNR at all level arteries of DLIR-H images were significantly higher than those of ASIR-V images ( p = 0.000–0.040). The quantitative analysis of DLIR-L and DLIR-M showed comparable denoise capability with ASIR-V. The overall image quality ( p = 0.000) and image noise ( p = 0.000–0.014) were significantly better in the DLIR-M and DLIR-H images. The image texture was improved by DLR at all level compared to ASIR-V images ( p = 0.000–0.008). Depictions of head and neck arteries and diagnostic performance were comparable between four groups ( p > 0.05). Conclusions Compared with 80% ASIR-V, we recommend DLIR-H for clinical carotid DECTA reconstruction, which can significantly improve the image quality of carotid DECTA at 50 keV but maintain a desirable diagnostic performance and arterial depiction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绿色心情发布了新的文献求助10
2秒前
叁叁肆完成签到,获得积分10
2秒前
ZW发布了新的文献求助10
6秒前
JamesPei应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
zhu97应助科研通管家采纳,获得20
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
10秒前
13秒前
绿色心情完成签到,获得积分10
18秒前
21秒前
研友_X89o6n完成签到,获得积分10
21秒前
22秒前
冷酷太清完成签到,获得积分10
26秒前
焰火青年发布了新的文献求助30
27秒前
30秒前
荷西发布了新的文献求助10
33秒前
33秒前
36秒前
Hello应助小天采纳,获得30
37秒前
我爱写论文完成签到 ,获得积分10
40秒前
snowpaper发布了新的文献求助10
40秒前
天野阳菜完成签到,获得积分20
42秒前
43秒前
44秒前
杨怂怂完成签到 ,获得积分10
44秒前
小红勇闯科研界完成签到,获得积分10
44秒前
JamesPei应助舒服的吗喽采纳,获得10
45秒前
49秒前
Maru完成签到,获得积分10
49秒前
荷西完成签到,获得积分10
51秒前
天野阳菜发布了新的文献求助10
53秒前
虚拟的惜筠完成签到,获得积分10
53秒前
gggggd完成签到,获得积分10
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777983
求助须知:如何正确求助?哪些是违规求助? 3323609
关于积分的说明 10215097
捐赠科研通 3038781
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798329
科研通“疑难数据库(出版商)”最低求助积分说明 758315