亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An improved faster R-CNN algorithm for assisted detection of lung nodules

计算机科学 人工智能 肺癌 肺癌筛查 深度学习 阶段(地层学) 目标检测 癌症检测 结核(地质) 图像处理 计算机断层摄影术 模式识别(心理学) 放射科 计算机视觉 医学 图像(数学) 癌症 病理 内科学 古生物学 生物
作者
Jing Xu,Haojie Ren,Shenzhou Cai,Xiaoping Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:153: 106470-106470 被引量:49
标识
DOI:10.1016/j.compbiomed.2022.106470
摘要

The morbidity and mortality of lung cancer are increasing rapidly in every country in the world, and pulmonary nodules are the main symptoms of lung cancer in the early stage. If we can diagnose pulmonary nodules in time at the early stage and follow up and treat suspicious patients, we can effectively reduce the incidence of lung cancer. CT (Computed Tomography) has been applied to the screening of many diseases because of its high resolution. Pulmonary nodules show white round shadows in CT images. With the popularity of CT equipment, doctors need to review a large number of imaging results every day. Doctors will misjudge and miss the lesions because of reviewing CT scanning results for a long time. At this time, the method of automatic detection of pulmonary nodules by computer can relieve the pressure of doctors in reviewing CT scan results. Traditional lung nodule detection methods, such as gray threshold method and region growing method, divide the detection process into two steps: extracting candidate regions and eliminating false regions. In addition, the traditional detection method can only operate on a single image, which leads to the inability of this method to detect the batch scanning results in real time. With the continuous development of computer equipment performance and artificial intelligence, the relationship between medical image processing and deep learning is getting closer and closer. In deep learning, object detection methods such as Faster R-CNN、YOLO can complete parallel detection of batch images, and deep structure can fully extract the features of input images. Compared with traditional lung nodule detection methods, it has the characteristics of high efficiency and high precision. Faster R-CNN is a classical and high-precision two-stage object detection method. In this paper, an improved Faster R-CNN model is proposed. On the basis of Faster R-CNN, multi-scale training strategy is used to fully mine the features of different scale spaces and perform path augmentation on lower-dimensional features, which improves the small object detection ability of the model. Through Online Hard Example Mining (OHEM), the loss value is used to quantify the difficulty of candidate region detection, and the training times of the region to be detected are adaptively adjusted. Make full use of prior information to customize the size and proportion of preset boundary anchor boxes. Using deformable convolution to improve the visual field to enhance the global features and enhance the ability to extract the feature information of pulmonary nodules in the same scale space. The new model was tested on LUNA16 (Lung Nodule Analysis 2016) dataset. The detection precision of the improved Faster R-CNN model for pulmonary nodules increased from 76.4% to 90.7%, and the recall rate increased from 40.1% to 56.8% Compared with the mainstream object detection algorithms YOLOv3 and Cascade R-CNN, the improved model is superior to the above models in every index.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
27秒前
小程同学发布了新的文献求助10
30秒前
1分钟前
尊敬背包发布了新的文献求助10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
1分钟前
草木完成签到 ,获得积分20
1分钟前
尊敬背包完成签到,获得积分10
1分钟前
上官若男应助nenoaowu采纳,获得30
2分钟前
辛勤晓旋完成签到,获得积分10
2分钟前
songsssssj完成签到 ,获得积分10
3分钟前
DChen完成签到 ,获得积分10
3分钟前
3分钟前
古月发布了新的文献求助10
3分钟前
zhaoxiaoyan发布了新的文献求助100
3分钟前
3分钟前
烟消云散完成签到,获得积分10
4分钟前
4分钟前
彭于晏应助zhaoxiaoyan采纳,获得10
4分钟前
alucard55发布了新的文献求助10
4分钟前
4分钟前
4分钟前
AiHaraNeko完成签到,获得积分10
5分钟前
重要的菠萝完成签到,获得积分10
5分钟前
alucard55完成签到,获得积分20
5分钟前
书中魂我自不理会完成签到 ,获得积分10
5分钟前
牛牛完成签到 ,获得积分10
5分钟前
vitamin完成签到 ,获得积分10
6分钟前
Orange应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
qsy完成签到,获得积分10
7分钟前
Chris完成签到 ,获得积分0
8分钟前
田様应助结实书南采纳,获得20
8分钟前
nenoaowu完成签到,获得积分10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
souther完成签到,获得积分0
9分钟前
melody完成签到 ,获得积分10
10分钟前
科研通AI5应助huajinoob采纳,获得10
10分钟前
10分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775963
求助须知:如何正确求助?哪些是违规求助? 3321530
关于积分的说明 10206154
捐赠科研通 3036604
什么是DOI,文献DOI怎么找? 1666365
邀请新用户注册赠送积分活动 797395
科研通“疑难数据库(出版商)”最低求助积分说明 757805